
Fermi National Accelerator Laboratory 

HEPnet 
N’HM TECHNICAL NOTES 

Analysis of X Protocol and the 
Underlying Networking Interface 

F. Abar 

Fermi National Accelemtor Laboratory 

P.O. Box 500, Batavia, Illinois 60510 

January 1992 

3 Operated ty Universfties kssarch Association Inc. under Contract No. DE-ACOZ-76CHOXCa tih the United states Deparbnent of Energy 



This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Governmeti nor any agency thereof, nor any of 
their employees, makes any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise. does not necessarily constitute or imply its 
endorsement, recommendation, or favoring by the United States Government or any 
agency thereof The views and opinions of authors expressed herein do not necessarily state 
or reflect those of the United States Government or any agency thereof. 



Analysis of X Protocol and the 
Underlying Networking Interface 

Farhad A. Abar 
Fermi National Accelerator Laboratory 

Batavia, IL 

Abstract 

The X Window System is a network transparent portable window system that is 
being adopted as a standard by nearly every workstation manufacturer. X Window 
System provides the environment for distributed graphical applications where the 
application (X client) and its display (X server) are separate process entities pos- 
sibly running in different machines. The communication between the application and 
the display is standardized through a well-defined protocol known as X Protocol 
over a reliable byte stream network interface. 

The physical separation between the server and client can introduce significant per- 
formance degradation due to communication delays. These delays are characterized 

as htency delay which results from trip delays between the server and client and 
transmission delay which results from volume of data communicated through net- 
works between server and clients. 

This paper investigates and categorizes network load and delay associated with X 
Window System as implemented under 4.3BSD operating system. 

A client-server distributed application is developed to emulate network activities be- 
tween the X server and client. Based on this application a collection of measure- 
ments are conducted to estimate the delays associated with a series of common X 
requests. The measurements are first done in a LAN environment with server and 
client running in separate Ethernet subnets. Subnets connectivity is established by 
routers and the organization backbone Ethernet. The measurement procedure is ex- 
tended to examine server and client network characteristics in a WAN environment 
which includes the ESnet national backbone. 

Based on the insight from the experimental data an analytical model is constructed 
to help predict X Window System performance in more general terms. 



This Page Intentionally Left Blank 



Table of Contents 

1 Objective ..................................................................................................... 
2 X Protocol Introductmn ............................................................................. 

2.1 X Architecture, Client-Server Model ................................................ 

2.2 X Protocol Definition ....................................................................... 

2.3 X Request ......................................................................................... 

Format.. ............................................................................................ 
Sample Request ................................................................................ 

2.4 X Reply.. ........................................................................................... 
Format.. ............................................................................................ 
Sample Reply.. .................................................................................. 

2.5 X Event.. ........................................................................................... 
Format.. ............................................................................................ 
Sample Event ................................................................................... 

2.6 X Error.. ........................................................................................... 
Format.. ............................................................................................ 
Sample Error .................................................................................... 

2.7 A Sample X Session.. ....................................................................... 

3 X Protocol Communication.. ...................................................................... 
3.1 X Protocol Network Calls under 4.3BSD.. ...................................... 

X Server Networking Interaction ..................................................... 
X Client Networkmg Interactmn.. ................................................... 

3.2 X Client-Server Emulation: em&Y.. ................................................. 
4 X Protocol Network Load Measurements .................................................. 

4.1 Objective.. .......................................................................................... 
4.2 Procedure ........................................................................................... 

xl lperf .............................................................................................. 
tcpdump.. .......................................................................................... 
xscope.. .............................................................................................. 

4.3 Examples of Common X Client Requests ....................................... 
Opening the Display ........................................................................ 
Creating Windows ............................................................................ 
Changing Window Attributes .......................................................... 
Mapping a Window.. ........................................................................ 

. 
Copymg Wmdow to Wmdow .......................................................... 
Moving Window ............................................................................... 
R&zing Window .............................................................................. 
Moving a Pointer.. ........................................................................... 
Creating Graphic Resources.. ........................................................... 
Destroy Sub-windows ........................................................................ 
Clearing Windows.. ........................................................................... 
Getting Window Attributes.. ........................................................... 

1 
2 
4 
7 
8 
8 
8 
9 
9 
9 

10 
10 
10 
11 
11 
11 
11 
14 
16 
17 
19 
21 
23 
23 
23 
23 
24 
25 
26 
26 
27 
27 
27 
28 
28 
28 
29 
29 
29 
30 
30 



ii 

Freeing Graphic Context .................................................................. 
Destroying Window ................. . ......................................................... 

4.4 Examples of X Graphical Primitives ............................................... 
Drawing Points ................................................................................. 

Drawing Lines .................................................................................. 

Drawing Text ................................................................................... 

Drawing Image ................................................................................. 

Getting Image.. ................................................................................. 
5 X Protocol Network Delay Measurements. ................................................ 

5.1 Objective.. .......................................................................................... 

5.2 Procedure.. ......................................................................................... 
5.3 LAN Configuration: X Protocol Network Delay Estimates.. .......... 

5.4 WAN Configuration: X Protocol Network Delay Estimates ........... 
6 Network Traffic Profile: LAN Configuration.. ........................................... 

6.1 Objective ............................................................................................ 
6.2 Network Monitoring Tool: SNMP.. .................................................. 

6.3 Procedure.. ......................................................................................... 

6.4 Network Statistics on Router I.. ...................................................... 
Input Traffic Profile ......................................................................... 

Output Traffic Profile ...................................................................... 

6.5 Network Statistics on Router II ...................................................... 
Input Traffic Profile.. ....................................................................... 
Output Traffic Profile.. .................................................................... 

7 Network Device Maximum Throughput Measurements.. ........................... 
7.1 Objective.. .......................................................................................... 

7.2 Flooding Experiment Procedure.. ...................................................... 
7.3 Flooding Experiment Results. ........................................................... 

8 Analytical Modeling of LAN Configuration.. ............................................. 
8.1 Objective.. .......................................................................................... 
8.2 Queuing Model Introduction. ............................................................ 

M/M/l Queue .................................................................................. 

Networks of M/M/l Queues.. .......................................................... 
8.3 LAN Configuration: A Network of M/M/l Queues.. ...................... 
8.4 Routers Queueing Delay ................................................................... 

Poisson Arrival Rate Assumption.. .................................................. 
Exponential Service Time Assumption ............................................ 
Queuing Delay on Router-I ............................................................. 

Queuing Delay on Route-II.. ............................................................ 
Total LAN Configuration Queuing Delay.. ..................................... 

8.5 Communication Layers Delay.. ......................................................... 

8.6 Ethernet Channel Acquisition Delay.. .............................................. 
Average Transfer Delay in Subnet 1 .............................................. 

Average Transfer Delay in Subnet 2 .............................................. 
Average Transfer Delay in Backbone Ethernet .............................. 

9 Model 
. 

Vahdatmn ........................................................................................ 

30 
31 
31 
31 
32 
32 
33 
34 
35 
35 
35 
36 
38 
40 
40 
40 
42 
43 
43 
45 
45 
45 
46 
48 
48 
48 
51 
53 
53 
53 
53 
54 
56 
57 
57 
57 
57 
57 
57 
58 
58 
60 
60 
61 
62 



111 

10 Conclusion ................................................................................................. 63, 

11 Future Direction.. ..................... :. ................................................................ 64 
12 References .................................................................................................. 65 

13 Bibliography .............................................................................................. 66 

Appendix A: emulX: X Client-Server Emulator.. ................................ A-l 

Appendix B: X Requests synopsis and Raw Data ........................... B-l 

Common X Setup Calls.. ................................................................. El 

Graphical Primitives X Calls.. ......................................................... B-9 

Appendix C: X Requests Listings and Descriptions.. ....................... C-l 
Colors and Colormaps.. .................................................................... C-l 

Cursors.. ............................................................................................ c-4 

Drawing Graphics ............................................................................. C-4 

Events.. ............................................................................................. C-6 
The Graphics Context.. .................................................................... C-9 
Images ............................................................................................... C-10 
Interclient Communication ............................................................... C-11 

Keyboard and Pointer.. .................................................................... c-13 

Security.. ........................................................................................... C-17 
WindowCharacteristics ...................................................................... c-17 

Window Manipulation by the Client .............................................. C-18 
Window Manipulation by the Window Manager.. .......................... C-19 

Appendix D: Listing of X Requets with Replies.. ............................. D-l 

Appendix E: X Events .................................................................................. E-l 

Appendix F: X Errors.. ................................................................................. F-l 



This Page Intentionally Left Blank 



List of Figures 

Figure 1: 
Figure 2: 
Figure 3: 
Figure 4: 
Figure 5: 

Figure 6: 
Figure 7: 
Figure 8: 
Figure 9: 
Figure 10: 
Figure 11: 
Figure 12: 

Figure 1% 
Figure 14: 
Figure 15: 
Figure 16: 
Figure 17: 

Figure 18: 
Figure 19: 

Displays, Screens, and Windows Definitions in X Protocol 
Server, Client, and Window Manager in X Protocol 
A Sample X Client-Server Session 
X under TCP/IP Suite of Protocol 
X Protocol Encapsulation under TCP/IP and Ethernet 
Protocol 

3 
5 

12 
15 
16 

X Server and Clients Queues 
X Server and Client Calls under 4.3BSD 
emulX Application Network Interaction 
X Network Load Test Bed 

Schematic of the LAN Configuration 
Schematic of the WAN Configuration 
Schematic of a Network Configuration Managed by 
SNMP Protocol 

17 
18 
22 
24 
36 
38 
41 

SNMP Network Statistics for the Interface Layer 
Average Input Packet-size Distribution on Router-I 
Average Input Packet-size Distribution on Router-II 
Flooding Experiment Test Bed 
Router-I Throughput Characteristics in Flooding Experi- 
ment 

42 
44 
46 
49 
52 

Analytical Modeling of LAN Configuration 56 
Test Setup to Measure Communication Layers Delay 59 



This Page Intentionally Left Blank 



List of Tables 

Table 1: Average Network Load and Delay for X Client Requests in 37 
a LAN 

Table 2: Average Network Load and Delay for X Client Requests in 39 
a WAN 

Table 3: Router-I Input Traffic Profile Statistics 44 
Table 4: Router-I Output Traffic Profile Statistics 45 
Table 5: Router-II Input Traffic Profile Statistics 45 
Table 6: Router-II Output Traflic Profile Statistics 46 



1. Objective 

The X protocol as a tool for the distribution of graphical displays is fairly com- 
plex. Its impact on today’s Local Area Networks (LAN) and Wide Area Networks 
(WAN) with very limited bandwidth is not clearly understood. By contrast, the X 
architecture as a client-server model is based on few premises that this paper aims 
to explain. 

The main focus of this paper will be to; 

1. illustrate the impact of X as a layer on top of the Internet protocol 
suites, 

2. examine the underlying networking activities present during X applica- 
tions, 

3. provide an initial assessment on the network loads and delays associated 
with a set of more frequent X activities over a LAN and a WAN con- 
figurations, and 

4. create an analytical model to predict X Window System performance un- 
der various network configurations. 



2 

2. X Protocol Introduction 

Distributed computing paradigms as computing models have gained considerable 
popularity with the emergence of powerful and cost effective desktop computers 
[LIDINSKY]. .4ccording to this model of computing the applications are not 
restricted in using local resources and they should be able to, transparently to the 
user, access resources located throughout the network. The computing task is 
divided between the local resource and the remote resource, where the remote 
resource takes on the responsibility of a server, accepting and servicing requests 
from one or more of processing entities (clients) scattered throughout the network. 

One key advantage of this distributed model is that each part of the software can 
be developed independently, hardware and operating system wise, of the others. In 
a heterogenous computing environment this makes available the services of the spe- 
cial purpose hardware and software. 

The network of near future is modeled and constructed to take advantage of dis- 
tributed computing and cooperating processing paradigm. Open Network Computing 
Network File System (ONC/NFS) originated by Sun Microsystem, Open Software 
Foundation Distribute Computing Environment (OSF/DCE) and MIT’s X Window 
System Protocol are examples of this emerging technology. 

Lidinsky pointed out that some of key properties that a network must have in or- 
der to adequately service client-server systems are: 

. Low response time (i.e., network delays) 

. Able to handle busty traffic efficiently or at least cost effectively 

. Simple network protocol 

. Low intrinsic bit error rate ( this allows simple protocols) 

. Privacy and security 

The X Window System, or X, is a network-transparent window system. With X, 
multiple applications can run simultaneously on a bitmap display’. This has been 
done before (e.g., kernel based systems such as Windows 3.0 and MACOS) but not 
in an open environment with high emphasis on portability to many different brands 
of hardware, from PCs to supercomputers. Network transparency means that ap- 
plication programs can run on machines scattered throughout the network. X allows 
applications to be device-independent, which eliminates the need for rewriting and 
recompiling applications in order for them to work with new display hardware. 

The X Window system provides a hierarchy of resizable windows and supports high 
performance device-independent graphics. The most distinguishing aspect of X as 

‘In bitmapped graphics (also referred as mater graphica), each dot on the wreecn (called a pixel) cm- 
rcaponda to one or more bita in memory. Progrsma modify the display aimply by writing to display 
memory. 



compared to other approaches such as MACOS is that it is based on an 
asynchronous network protocol rather than on procedure or system calls. 

In the X protocol a display is defined as a workstation consisting of a keyboard, a 
pointing device such as a mouse, and one or more screens. Multiple screens can 
work together, with mouse movement allowed to cross physical screen boundaries. 
As long as multiple screens are controlled by a single user with a single keyboard 
and pointing device, they comprise only a single display. 

The bitmapped screens are controlled via the X protocol. For better screen utiliza- 
tion a screen can be divided up into smaller areas called windows. A window is a 
rectangular area that works in several ways like a miniature screen. Each window 

on a screen running X can be involved in a different activity. Figure 1 provides 
the graphical representation of displays, screens, and windows in X protocol. 

Figure 1: Displays, Screens, and Windows Definitions in X Protocol 

The way a kernel-based window system operates is inherent in the window system 
itself. By contrast, the X Window System concentrates control in a window 
manager. The window manager largely determines the look and feel of X on a par- 
ticular system. The window manager is just another X application except that by 
convention it is given special authority to control the layout of windows on the 
SCFZ”. 

X applications can be written solely with Xlib. XL6 is the C library which includes 
a low level procedural interface to the X protocol. They could also take advantage 
of higher level subroutine libraries known as toolkits. Toolkits implement a set of 
user interface features such as menus or command buttons (referred to generically 
as toolkit widgets) and allow applications to manipulate these features. 



To give the reader an idea of how efficient the X protocol is, “redrawing a normal 
80x24 character terminal window using the X protocol would take about 2 seconds 
of network time at 9600 baud” [NYE]. Th’ ‘~9 &&,ulation takes into account that the 
X protocol requires some information in addition to the character codes that a 
hard-wired terminal requires. To show the efficiency of the of the X protocol, a 
hard-wired terminal would take 80% as much time to refresh an entire screen of 
the same dimensions at the same serial speed [NYEJ. 

For the cases where a graphics image is being redrawn (as opposed to characters) 
performance is often limited more by the time required to draw graphics than by 
the overhead in the protocol. 

2.1. X Architecture, Client-Server Model 

Most window systems are kernel-based; that is, they are closely tied to the operat- 
ing system itself and can only run on a discrete system, such as a single worksta- 
tion. The X Window System is not part of any operating system, but is instead 
comprised entirely of “user-level” programs. The architecture of the X Window Sys- 
tem is based on a client-server model. The system is divided into two distinct 
parts: display servers that provide display capabilities and keep track of user in- 

Put, and clients: application programs that perform specific tasks.’ The client 

programs make requests that are communicated to the hardware display by the 
server. For instance, client software could be running on a powerful remote system, 
and all the user input and displayed output occur on the PC or workstation serv- 
er. 

X is a network-oriented windowing system. An application need not be running on 
the same system that actually supports the display. While many applications will 
execute locally, other applications may execute on other machines, sending requests 
across the network to a particular display and receiving keyboards and pointer 
events from the system controlling the display. 

X is one component in an overall distributed systems architecture. Distributed ap- 
plications based on this architectural model are separated into two autonomous and 
independent yet co-operative softwares modeled as server and client. In this model 
of computing the computing task is broken up (server and client) and distributed 
to different systems in a h&erogenous computing environment. The server and the 
client then communicate with each other (send messages) with an agreed set of 
protocols by means of an underlying network connection. 

The following is the description of some of the terminology used in X literature 
and Figure 2 provides a graphical representation of X server, X clients, and X 
Window Manager. 

2 x dekes “clieot” and %erver” opposite to the way other distributed system such as ONC/NFS define 
thcae terml 



stream 
network 
WS”SpPrt 

5 

Figure 2: Server, Client, and Window Manager in X Protocol 

In X the program that controls each display (the physical device) is known aa a 
server. The terminology is different from other well-known servers such as file or 

print servers where the server is remotely accessed acmss the network. In X 
protocol server is the local process 3 that interact the client which may be running 

locally or remotely. 

The X display server is a program that keeps track of all input coming from input 
devices such as the keyboard and mouse, and input from other clients that are 
running. As the display server receives information from a client, it updates the 
appropriate window on the display. The display server may run on the same corn- 

puter or on an entirely different machine than a client. 

Servers are available for PCs, workstations, and even for special terminals (X ter- 
minals) with an integral Ethernet network interface, which may have the server 

downloaded from another machine or stored in ROM. 

3A “local” process is a proceaa running on the machine into which the user ir physically interacting. A 
“remote” pmcese on the other hand runa on a machine which ia connected via some communication path8 
or nerwork to the machine where the user is phyaieally interacting. 



6 

The server is typically made up of a device-independent layer and a device depend- 
ent layer. The device-independent layer includes code that is valid for all machines. 
The device-dependent part must be customized- for each hardware configuration. 

The server acts as an intermediary between user program (called X clients or X 
applications) running on either the local or remote systems and the resources of 
the local system. 

The server performs the following tasks: 

. Allow access to the display by multiple clients. 

l Interprets network messages from clients. 

l Passes user input to the clients by sending network messages. 

. Does two-dimensional drawing-graphics (that are performed by the dis- 
play server rather than by the client). 

The server is designed in such away as to never trust clients to provide viable or 
executable data. In situation where the sever has to wait for a response from a 
client. it must be possible to continue servicing other clients. Therefore3 the Server 
is designed so that it can interact with the client in non-blocking I/O. This way a 
bad client or a network failure could never cause the entire display to hang. 

Clients are applications that communicate with the server by means of calls to a 
low-level library (Xlib) implementing X protocol. Xlib provides functions for con- 
necting to a particular display server, creating windows, drawing graphics, respond- 
ing to events, and so on. Xlib calls are translated to protocol requests that are 
passed either to the local server or to another server across the network. zterm, 
an X based terminal emulator, zcalc, a calculator utility, and zclock a clock utility 
are examples of X clients. 

In practice, each user is sitting at a server and can start applications locally to 
display on the local server or can start applications on remote hosts for display on 
the local swwr, if the remote hosts have permission to connect to the local server. 

In the process of designing the X protocol, much thought went into the division of 
responsibility between the server and the client, since this determines what infor- 
mation has to be passed back and forth through requests, replies, and events. 
Scheifler and Gettys provide an excellent source of information on design of the X 
protocol [SCHEIFLER]. 

The decisions ultimately reached were based on portability of client programs, ease 
of client programming, and performance. 



2.2. X Protocol Definition 

X protocol is what defines the X Wind& System. It is designed to allow many 
different types of machines to cooperate within a network and to communicate all 
the information necessary to operate a window system over a single asynchronous 
bidirectional stream of g-bit bytes. This was one of the major innovations in the 
X design. 

The X protocol can be implemented using a wide variety of languages end operat- 
ing systems. Xlib is the C language implementation of X protocol. There is also a 
Lisp interface. A program in any programming language that can generate and 
receive X protocol requests ten communicate with a server and be used with the X 
Window System. At present, XIi6 is the most popular programming interface used 

with X. 

The protocol basis and portability of the X window System is especially important 
today, when it is common to have several makes of machines in a single network. 

What the X protocol specifies is the X packet structure and the information within 
the packets that gets transferred between the server end client in both directions. 
The same protocol is also used when the server and client are running on the 
same machine. However, in this case information is transferred via some internal 
channel instead of the external network. 

The X protocol specifies four types of messages that can be transferred over the 
network. requests are sent from the client to the server, while replies, events, and 
cwow are sent from the server to the client. 

Padding bytes are required because each network packet generated by X is always 
a multiple of 4 bytes long, and all 16- end 32-bit quantities are placed in the 
packet such that they are on 16 or 32-bit boundaries. This is done to make im- 
plementation of the protocol easier on architectures that require data to be aligned 
on 16 or 32-bit boundaries. Length of data in the X protocol are always specified 
in units of 4 bytes. 

Any events caused by executing a request from a given client must be sent to the 
client before any reply or error is sent. 

The following subsections provides the definitions of these four types of messages 
along with their format, size, and an example of each message type according to 
MIT X Consortium Standard. 



a 

2.3. X Request 

A request is generated by the client and sent to the server. A protocol request can 
carry a wide variety of information, such as specification for drawing a line or an 
inquiry about the current size of a window. A protocol request can be any multiple 
of 4 bytes in length. 

Format 

Every request consists of four bytes of a header followed by zero or more ad- 
ditional bytes of data. The header contains an a-bit major opcode, a 16-bit length 
field expressed in units of four bytes, and a data byte. The length field defines the 
total length of the request, including the header. Unused bytes in a request are not 
required to be zero. Major opcodes 128 through 255 are reserved for extensions. 
Every request on a given connection is implicitly assigned a sequence number by 
the server , starting with 1. This sequence number is used in replies, error, and 
events. 

Sample Request 

The AllocColor request specifies which colormap the client wants to use, and the 
red, green, and blue values for the desired color. 

# of B,tsm 
1 
1 
a 
4 
a 
a 
a 
a 

TJP~ Value. Dewription 
84 opcode 

uouwcd 
4 request length 

coLDBuP co1orm.p ID 
unsigned int red 
unsigned int green 
unsigned int blue 

padding 

Maximum-request-length specifies the maximum length of a request, in 4-byte units, 
accepted by the server. This limit might depend on the amount of available 
memory on the server. The server simply discards the requests longer than this 
limit. Since the field length is a 16-bit value and is in units of 4 bytes, the max- 
imum request size is 262,140 bytes. 

4laximum-request-length will always be at least 4096 (e.g., requests of length up to 
and including 16,384 bytes will be accepted by all servers). 

Appendix C provides a listing of all the X protocol requests with brief description 



9 

2.4. X Reply 

A reply is sent from the server to the client in response to certain requests. Not 
all requests are answered by replies - only the ones that ask for information. Re- 
quest that specify drawing, for example, do not generate replies, but requests that 
inquire about the current size of a window do. Replies can be any multiple of 4 
bytes in length, with a minimum of 32 bytes. There are no requests that some- 
times have replies and other times do not. Replies are always immediate. If the 
client is a little slow at reading data from the network, the server can get an er- 
ror from the underlying reliable protocol entity (e.g., TCP) indicating that the net- 
work wbs unable to transmit all the data. 

Format 

Every reply consists of 32 bytes followed by zero or more additional bytes of data. 
Replies must be at least 32 byte long. The additional data is stored after the 32 
bytes. Every reply contains at least one byte of reply opcode, one data byte, a 16- 
bit sequence number of the corresponding request, and a 32-bit length field in units 
of four bytes. The length field specifies the length of additional data after the first 
32 bytes. 

Sample Reply 

Upon receiving an AllocColor request from a client, the server forwards the follow- 
ing reply to its client: 

# of Byte. 
1 
1 
a 
4 
a 
a 
a 
a 
4 

12 

TJP~ Yrluee Description 
1 reply opcode 

unused 
unsigned int sequence number 

0 rspl~ length 
uneignsd int red 
unmignsd int green 
unsigned int blue 

padding 
unsigned int pixel value 

prdding 
I I 

As one can see the reply length is set to zero since there is no additional data 
beyond the minimum required 32 bytes. 

A protocol request that requires a reply is called a round-trip request. Round-trip 
requests have to be minimized in client programs because they lower performance 
when there are network delays. 

Appendix D provides the format and a listing of all the requests that have replies. 



10 

2.5. X Event 

An event is sent from the server to the client and contains information about a 
device action or about a side effect of a previous request. All events are stored in 
a 32-byte long structure to simplify queueing and handling them. 

The X server is capable of sending many types of events to the client, only some 
of which most clients need. X provides a mechanism whereby the client can express 
an interest in certain events but not others. Not only does this prevent wasting 
of network time on unneeded events, but it also speeds and simplifies clients by 
avoiding the testing and throwing away of these unnecessary events. 

An event is sent from the server to the client and contains information about a 
device action (keyboard entry) or about a side effect of a previous request (map- 
ping a new window on the screen). 

Format 

Events are 32 bytes long. Every event contains an S-bit type code. The most sig- 
nificant bit in this code is set if the event was generated from a SendEvent re- 
quest. Event codes 64 through 127 are reserved for extensions. Every core event 
(with the exception of KeymapNotify) also contains the least-significant 16 bits of 
the sequence number of the last request issued by the client that was processed by 
the server. 

Sample Event 

From the client’s point of view, the only true indication that a window is visible 
is when the server generates an Expose event for it. The following is the Expose 
event, as sent from the server: 

I # of B,tclr TTP~ Vsluss Description 
1 1 event coda 
1 unused 
a uwigned int sequence number 
4 WINDOW window 
a unsigned int L 
a unsigned int r 
2 umigned in+. width 
a unsigned int height 
a unlriened int count 

I4 padding 

Appendix E provides a listing of all the X11 protocol event types accompanied by 
a brief description. 



11 

2.6. X Error 

An error is like an event, but it is handled differently by clients. C’nlike events, 
which are queued by the client library to be read later, errors are dispatched im- 
mediately upon arrival to an error-handling routine by the client-side programming 
library. Error messages are the same size as events (32 bytes). 

Format 

Error reports are 32 bytes long. Every error includes an a-bit error code. Error 
codes 128 through 255 are reserved for extensions. Every error also includes the 
major and minor opcodes of the failed request and the least-significant 16 bits of 
the sequence number of the request. 

Sample Error 

AB an example, lets say the client sends a request to draw a line to the server 
but gets the window and GC arguments reversed. The following is what the Server 
will return as a BadWindow error report; 

1) of Bytes TJP= Valuam Dsacriptian 
1 * error (alr=ya IOl-0 for error) 
1 a cod=(BadWindor 
a unsigned int maqusnce numbar 
4 unsigned int b=d r=m=urc= id 
a unsigned int minor opcode 
1 unsigned int major opcode 

21 padding 

Error are basically treated just like events all the way to the routine in the client 
library that receives them. It is at this point that they are sent to the error- 
handling routine instead of being queued. 

Appendix F provides a listing of all the Error reports with a brief description. 

2.7. A Sample X Session 

The following section describes what happens over the network during a simple ap- 
plication that creates a window, allocates a color, waits for events, draws into the 
window, and quits. This example uses three of the four types of X network mes- 
sages as they would occur in an application. The fourth is the error. The sample 
X Server client session is illustrated in Figure 3. 

Here are the network events that will take place during a successful X client ses- 
sion: 

1. Client opens connection to the server and sends information describing 
itself. 



12 

sent by Client Network sent by server 

Figure 3: A Sample X Client-Server Session 

2. Server sends back to client data describing the server or refusing the 
connection request. 

3. Client makes a request to create a window. This request has no reply. 
It is queued up by the client’s X&b for subsequent transmission. 

4. client makes a request to allocate a color. Since this request requires a 
reply from the server, the Xlib sends all of the pending requests along 
with it. 

5. Server sends back a reply describing the allocated color. 

6. Client makes a request to create a graphics context, for using in later 
drawing requests. 

7. Client makes a request to map (display on the screen) the created win- 
dow. 

8. Client makes a request identifying the types of events it requires. In this 
case, Expose and ButtonPress events. It then waits for an Expose 



13 

event before continuing. This sends the accumulated requests to the sew- 
er. 

9. Server sends to client an Expose event indicating that the window has 
been displayed. 

10. Client makes a request to draw a graphic, using graphic context. 

11. Loop back to wait for an Expose event. 

The first byte of data in the connection phase identifies the byte order employed 
on the client’s machine. The value 102 (ASCII uppercase B) means values are 
transmitted most significant byte first, and the value 154 (ASCII lowercase 1) 
means values are transmitted least significant byte first. All 16- and 32-bit quan- 
tities, except those involving image data, are transferred in both directions using 
this byte order specified by the client. X servers are required to swap the bytes of 
data from machines with different native byte, in all cases except in image process- 
ing. The first byte in the packet that opens the connection between the client and 
the server, sent from the client library, tells the server which byte order is native 
on the host running the client. 

Image data is always sent to the server and received from the server using the 
server’s byte order because image data is likely to be voluminous and byte swap- 
ping is expensive. The client is told the serve~‘s byte order in the information 
returned after connecting to the server. 



14 

3. X Protocol Communication 

The X protocol is designed to communicate all the information necessary to operate 
a window system over an asynchronous bi-directional stream of g-bit bytes. From 
the user’s point of view and from the application programmer’s point of view the 
network is transparent since both local and network connections can be operated in 
the same way using the protocol. 

Below the X protocol, any lower layer of network can be used, as long as it is 
bidirectional and delivers bytes in sequence and unduplicated between a server and 
a client process. When the client and server are on the same machine, the connec- 
tion is based on local interprocess communication (IPC) channels such as pipes, 
shared memory, etc. 

Normally, clients implement the X protocol using a programming library that inter- 
faces to a single underlying network protocol, typically TCP/IP or DECnet. 

The sample implementation provided by MIT [MIT] of the C language client pro- 
gramming library called Xlib uses sockets on systems based on Berkeley UNIX. 

Servers are usually designed to understand more than one underlying network 
protocol so that they can communicate with clients on more than one type of net- 
work at once. For example, the DECwindows server accepts connections from 

clients using TCP/IP or from clients using DECnet. Currently, TCP/IP and DEC- 
net are the two most popular network protocols commonly supported in the X ser- 
vers. 

Figure 4 illustrates the relationship between the X protocol and the Internet suite 
of protocol. As it is shown in Figure 4, graphics are performed as X applications 
on the remote host make the appropriate function calls to their Xlib. The\ Xlib 
then translates the function calls to X protocol messages that are understood by X 
server on the local host. The X messages are then delivered to TCP/IP com- 
munication entities within the system kernel through the socket system call inter- 
face. From this point on it is the responsibility of the TCP/IP communication 
layers (TCP, IP, and hardware interface) on both sides to reliably deliver X mes- 
sages from remote host to X server running on the local host. 

Figure 5 illustrates X message encapsulation steps as messages (requests, replies, 
events, and errors) traverse through TCP/IP network layers down to the Ethernet 
hardware interface. 

As it is shown in Figure 5 it is common for a TCP segment to contain several X 
messages. This is because X server and Xfib buffer X messages instead of sending 
them immediately to one another, so that they can continue running instead of 
waiting to gain access to the network. This is possible for several reasons: 

l Most requests are drawing requests that do not require immediate ac- 
tion. 



15 

Local host 
r - - - - - - - - - / Ker”e’ 

/I I 

I 
I ApDl~catlo” Layer 

I 

I 
I 

I 

I 

I 

I 
I Socket Layer 

I 
I 

I 

I 
Tra”SpO,-t Layer 

I 

I 

I 

I 
NetwDrr Layer 

I 

I 

I 

I 
Data-Llnk Layer 

I 

I 

I 

j 1 Oevicedrlver ( 

I 

I 

I 

I 

I 

I 
I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

t 

Socket 5ysten. 
call ,nter,ace 

1 

TCP 

t 

IP 

t 

Hardware 
tnterrace 
(Ethernet) 

1 

l-----j----l 

Remote host 

r---------1 

I 

I 

I 
I 

I 

I 

I 

I 
I 

I 

I 

I 

I 
I 

I 

I 

I 
I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

x Application FE; X,,b 

I 
Kernel t I 

7 7 I I 
1 1 

50cet system 50cet system 
call Interlace call Interlace 

I I 
I I 

1 1 
I I 

I I 

TCP TCP 

t t 

1: 1: 

I I 

I I 

IP IP I I 

I I 

I I 

I I 

I I 

I I 
Hardware Hardware 
I”tWfaCe I”tWfaCe 

I I 

~Efhemet~ ~Efhemet~ I I 

I I 

1 1 

I I 

I I 

‘- - - - t- - 7 d 
- t w 

Ethernet cable 

Figure 4: X under TCP/IP Suite of Protocol 

l The network stream is reliable; therefore, no confirmation message from 
the server is necessary. 

This X message buffering technique is illustrated in Figure 6. 



16 

x Message 

x Message 

x message 

TCP MeSSage 

/ 2 28 bytes 

OOCOde unused sequence *Event 
“UrnreT xerror 

I I 2 0 - 262, I43 

oocoae ““urea reauest X~ewe~~ 
W”@h 

I 1 2 4 24 - 2-34 

opcode “““SC6 sc4, ww XRteDlY 
nwrme lewn 

20 - 0 - 65535 - 

TCP Head@ xdala ( Xdata 2 xaata n 

20 4. O-65515 t 

IP Message iP Header TCP HeaM *data I Ydata 2 xaara n 

14 4 46- ,500 * 4 

Ether ~merner IP neae TCP 3cae xmta I mata 2 
“et Heam 

Xdsta n y; 

Frame 

Figure 5: X Protocol Encapsulation under TCP/IP and Ethernet Protocol 

3.1. X Protocol Network Calls under 4.3BSD 

The following is an overview of network related calls for X protocol under UNIX 
4.3BSD operating system. The code segments were obtained from XllR4 source 
available form MIT project Athena [MIT]. Stevens [STEVENS] provides an in-depth 
explanations of UNIX network calls. 

The information presented here is used later to develop a distributed client-server 
application which emulated the X client and server to help measure delays in- 
volved. 



17 

X Server Network 

I I Device Driver 

sewer 
Q”eW 

Evel 

Req. RW 

kt 

Em We” 4”e’ 

1 
I lY >r ” 
I- 

I 

Client I 

,pplication XllD queue 

v 4 

X Client 2 

F Xllb q”eW 1 

I! 
Evenrs into 
e”enf queue 

. 
Requests lrom 
request queue 

Figure 6: X Server and Clients Queues 

Figure 7 is a graphic representation of the X server and client network interaction. 
The functions in bold format such as sock&() are system calls specific to 4.3BSD 
while other functions in regular text (i.e., CreatewellknotvnSockets ) are 
programmer’s defined functions in the X server code and Xlib. 

X Server Networking: Interaction 

Upon startup, the server initiates network connectivity by issuing the function calls 
CreotclvellknournSockets and Open-TCP-Connection and subsequently the following 
system calls as depicted in Box-l of Figure 7 

1. sock&() system call: A process starts network I/O by specifying the 
type of communication protocol with the help of socket system call. 
The socket system call is analogous to the open system call for tiles and 
returns a socket descriptor. 

2. bind0 system call: The bind system call assigns a name to an unnamed 
socket descriptor. Basically, X server register its address with the sys- 
tem. It tells the system “this is my address and any X messages 
received for this address are to be given to me.” 



18 

x Server 
BOX I 

x Client 
BOX J 

~con”nectDlsDla”~l 

l-l 

mkeT‘PCo”“ectlano 
5ocketo 

Re~aRe9”eStFramCllentO 
5ena RewCSfJ 

Figure 7: X Server and Client Calls under 4.3BSD 

3. lieten() system call: This system call is used by X server to indicate its 
willingness to accept connections from X clients. 

For TCP connection, displays on a given host are numbered starting from 0, and 
the server for display N listens and accepts connections on port 6000+N. 

Once network initialization process is completed the X server then proceeds to 
issues network related system calls in Box-2 of Figure 7. 

1. select() system call: This system calls allows the X server to instruct 
the kernei to wait for any one of multiple events to occur and to wake 
up the X server only when one of these events occurs, such as an in- 
coming X client request for connection. 



19 

2. accept() system call: This system call takes the first connection request 
on the queue and creates another socket with the same properties as the 
X server socket. 

To reduce the number of small packets and thereby decreasing in the traffic load 
on a WAN there is a scheme in 4.3BSD to allow only a single small packet to be 
outstanding on a given TCP connection at any time. In this scheme the process’s 
TCP buffers the small packets until the previous small packet is acknowledged. 
This is known as TCP coalescence. This scheme could significantly increase network 
delays for X client-server applications. The TCP-NODELAY option is used here 
by the setsockopt system call to defeat this buffering algorithm which allows the 
X server’s TCP to send small packets as soon as possible. 

The fcntl() system call with the FNDELA Y parameter designates the new socket as 
nonblocking. This means that any I/O request that can not be done on a non- 
blocking manner is rejected. This feature does not allow the X server to be hung 
indefinitely by a bad or slow client. 

X messages are t~hen delivered to the server by the TCP entity. Upon their arrival 
the server proceeds by reading X messages through read0 system call and process- 
ing clients’ requests ( Box-6 ). 

The X server then returns the appropriate responses back to the X client by 
delivering its replies to the TCP entity through writev system call. 

X Client Networking Interaction 

The X client attempts to connect to server, given the display name. The display 
names may be of the following format: 

/hostname/ : displaynumber j.screennumber/ 

where the hostname is the Internet address of the X server, and the displaynumber 

and screennumber are the desired display and screen controlled by the X server, 
most often specified as zeros. 

131.225.85.1:O.O is a typical example of a display name. 

The absence of hostname is interpreted by the ,Uib to make the most efficient lo- 
cal connection to the X server on the same machine. This is usually: 

. shared memory 

l local stream 

. UNIX domain socket 

. TCP to local host 

Within Glib library, the MakeTCPConnection() routine sets up the socket data, 
create a socket and attempts t,o make a connection to the specified X server 
(BOX-~, Figure 7). 



20 

As was the case with the server side, the setsockopt() system call is used to turn 
off the TCP coalescence, and select() system call is used for I/O multiplexing 
(BOX-~, Figure 7). 

Functions such as WriteToSeruer. ReadFromServer, ReadRequestFromClient, and 

WriteToClient are used by the X server and Xlib which then use the read()) and 
writev() system calls to exchange messages with its peer entity (X server) (Box 5, 
6, 7, and 8, Figure 7). 



21 

3.2. X Client-Server Emulation: emuiX 

To obtain the network performance char&teristics between two processes utilizing 
TCP/IP network connection (such as X-server and X-clients), a client-server dis- 
tributed application (err&X) was created which closely emulates the underlying net- 
working interactions between the an X server and an X client as described in the 
previous section. 

It should be noted that em&i application objective is to mimic the networking 
steps that are taken by the X .server and client processes under 4.3BSD as were 
shown previously in Figure 7. The emulX client and server simply exchange mes- 
sages of specific sizes with each other. The transfer mechanism is provided by the 
reliable byte stream services of the TCP protocol as is the case with the X 
protocol implementation under 4.3BSD. 

The goal of such network interface emulation is to provide lower bounds4 on delays 
associated with X protocol messages as they go through only the TCP,‘IP network 
layers in a typical X client-server session. 

emulX is programmed to act as a server or client. The program acting as as 
client would accept for arguments the address of the remote host for connection, 
the size of X request , the corresponding reply size, and finally the number and 
frequency of transmissions. It then tries to establish a connection over the desig- 
nated TCP port to the remote host where its peer entity resides. Once connected, 
and the size of the request and reply messages communicated the client starts up 
its timer and sends its request to the server. The client then listens on the port 
and awaits the arrival of the reply message from the server. Upon the receipt of 
the last byte of message from the server it then stops the timer, and outputs the 
TCP delay involved in milliseconds. 

The emuLX program emulating an X server is started on a remote host and ac- 
cepts connection from err&X clients on the network. A reply message associated 
with the incoming requests is immediately transmitted back to its client. 

It should be noted that the TCP delay reported is not just the delay between the 
physical interfaces of the local and remote hosts but also includes the delays as- 
sociated with Network layers (IP), Transport layers (TCP) and the socket layers. 

Figure 8 provides the schematics for this program functionality. 

err&X program is used later on to estimate the lower bounds on delays ex- 
perienced by X clients and X server applications. 

Appendix A provides the complete source code for the err&X application. 

'The delaya include only the network delaya and not X meaaage proceaaing delsya 



22 

i-) ~-- (7) 
host 

Send request; 
start timer 

Socket 

TCP 

IP 

Network 
Interface 

Receive reply; Receive request 

Figure 8: emulX Application Network Interaction 



2s 

4. X Protocol Network Load Measurements 

4.1. Objective 

The objective of this section is to identify the network load associated with the X 
Window System application. Because of great diversities between various X applica- 
tions, an attempt was made to identify some basic X application’s primitives which 
are frequently found within X applications. 

4.2. Procedure 

The software tools used in identifying the network load imposed by the X applica- 
tions over a network stream were an X application based on zlfperf [XllPERF], a 
network monitoring tool, tcpdump [TCPDUMP], and an X protocol monitoring tool, 
zscope [XSCOPE]. 

The hardware tools for this experiment were two Sun SPAR&t&on l+ worksta- 
tions, one for running the X application and another for monitoring the network, 
and one Silicon Graphics workstation for running the X server. Figure 9 provides 
the schematics for this experiment. 

xllperf 

xllperf is an X11 server performance test program. The xllperf application con- 
sists of 222 separate tests that stress nearly every aspect of X-server functionality. 
The xllperf command that was executed for the purpose of generating graphical 
primitives such as drawing dots was: 

x rllparf -rap. 1 -rcpert 1 -a,nc -dot 

where, 

reps 1 fix the repetition count to one. By default xllperf automatically 
calibrates the number of repetitions of each test, so that each 
should take approximately the same length of time to run across 
different servers. We need to by pass the calibration and enforce 
the program to only execute the desired request only once. 

repeat 1 run the test once. 

sync runs the test in synchronous mode. This mode was chosen to 
prevent the XLIB from queuing the requests. As explained earlier? 
there is a buffering mechanism in the Nib in which the X re- 
quests are not immediately sent to the X server in order to min- 
imize network loads. This option, however, instructs the Xlib to 
by pass the buffering scheme and send the request immediately. 
We need this mode of operation in order to correctly capture net- 
work loads generated by individual X requests. 



24 

Local Host 
Silicon Graphics 

xi 1 perf output 

Remote Host Sun 

X client: 

Xl I perf 

Silicon Graphics Sun 

Figure 9: X Network Load Test Bed 

dot Generate the request for drawing dots on the screen. 

The zliperf program was used to setup the connection to an X server, create a 
window, and perform the desired graphical requests in an synchronous mode. This 
mode was used to make sure that the Xlib does not provide any queuing of the 
requests. A separate run for each of the graphical primitives tinder investigation 
was conducted. 

The current program is mostly the responsibility of Joel McCormick. It is based 

upon the xllperf developed by Phil Karlton, Susan Angebranndt, and Chris Kent, 
who wanted to assess performance differences between various servers. 

tcpdump 

tcpdump is a network protocol monitoring tool that records traffic on the Ether- 
net, the basis of protocol type and source/destination address specification. The 

tcpdump command that was typically executed was: 

!4 tcpdtmp tcp port 8888 md host cdeun and cdsgi 



25 

where, 

tcp port Port 6000 is typically used in TCP/IP for X data. tcp port 6000 
specifies to tcpdump to record all TCP data that was exchanged 
on port 6000. 

host Record all Ethernet traffic between nodes cdsun and cdsgi. cdsun 

This was the name of the host where X client zllperj was run- 
ning. 

cdsgi This was the name of the host where X server was running and 
processing the zllperf requests. 

The tcpdump was run concurrently with the zlfperf on a different platform 
monitoring the network medium and reporting all the X protocol related ethernet 
packets communicated between the two hosts running the X server and the X 
client. 

The program is loosely based on SMI’s “etherfind” although none of the ethertind 
code remains. It was originally written by Van Jacobson, Lawrence Berkeley 
Laboratory, as part of an ongoing research project to investigate and improve TCP 
and Internet gateway performance. 

zscope is a program to monitor the connections between the X11 window server 
and a client program. zscope runs as a separate process. By adjusting the host 
and/or display number that a X11 client attaches to, the client is attached to 
zscope instead of X11. zscope attaches to X11 as if it were the client. All bytes 
from the client are sent to zscope which passes them on to X11; All bytes from 
X11 are sent to zscope which sends them on to the client. zscope is transparent 
to the client and X11. 

In addition to passing characters back and forth, zscope will print information 
about this traffic on stdout, giving performance and debugging information for an 
X11 client and server. 

The xseope command that was typically executed was: 

X xscopa -hcdsgi3 -il 

where, 

-hcdsgi Specifies the name of the host where the desired X server is run- 
ning. 

-ii Tell the zscope to listen to port 6001 (6000+1) for the incoming 
X messages from the host running the zffperf application. It 
should be noted that the display for the zllperj was deliberately 
chosen to be the hostname where the zscope is running with port 
6001. 

zscope was used in this experiment to capture and identify all X protocol messages 
communicated between the X server and X client, zlfperj. 



26 

4.3. Examples of Common X Client Requests 

The following is the listing of some of the c&nmon X Client Requests which were 
generated by the zlfperf application and a summary of their network activities 
captured by the network monitoring tool. 

The network traffic summary for each request includes: 

l Total Ethernet packets sent by the X client to the X server for the 
given request. 

l Total Ethernet packets sent by the X server as a reply to the X client. 

l Total X request data jbytesj encapsulated in the Ethernet frames from 
X client. 

l Total X reply data [bytesi encapsulated in the Ethernet frames from X 
server. 

l Sum of X data [bytes] exchanged between the X server and client. 

l Total number of bytes exchanged between the local and remote hosts. 

. Total network overhead [bytes] (TCP, and IP headers plus Ethernet 
header and trailer overhead) involved for each X request. 

Appendix B provides the synopsis and the raw data collected for these requests. 

Opening the Display 

Objective: Connects the client to the server controlling the hardware display 
through TCP, or UNIX or, DECnet streams. 

X Client Call: XOpenDisplay 

Network Traffic: 

Total Ethernet packets sent by X client: 3 
Total Ethernet packets sent by X server: 3 
Total X client data generated [bytes]: 33 
TotsA X server datr generated [bytes]: 218 
Total X traffic [bytes]: 273 
Total network traffic [bytes]: 138 
Total network overhead [bytes]: 433 



27 

Creating Windows 

Objective: Creates an unmapped -InputOutput subwindow of the specified 
parent window. 

X Client Call: XCreateSimple Window 

Network Traffic: 

Tat.1 Ethernet packet- sent by X client: 3 
Tot.1 Ethernet packets sent b, X eerrer: 1 
Total X client d-t- generated [bptem]: 44 
Tot&l X ser.em d.tr gsnerrtsd [brtee]: 33 
Tot-1 X traffic [brtas]: 73 
Total network traffic [byte.]: 183 
Tote.1 network overhesd [bytea], 113 

Changing Window Attributes 

Objective: Changes any or all of the window attributes that can be changed. 

X Client Call: XChange WindowAttributes 

Network Traffic: 

Total Ethernet packets sent by X client: 3 
Tot.1 Ethernet packets sent by X server: I 
Tot-1 X client data generated [brtes]: 28 
Total I server datr generated [b,te.]: 33 
Total X traffic [bytes]: 38 
Tots1 network traffic [byte.]: 248 
Total network overhead [byte.], 188 

MappinK a Window 

Objective: Maps a window, making it eligible for display. 

X Client Call: XMap Window 

Network Traffic: 

Total Ethernet packets sent by X client: 3 
Total Ethernet packets sent b, X server: 3 
Total X client data generated [bytes]: 13 
Total X server data genersted [b+z.]: 33 
Total X traffic [byte.]: 44 
Total network traffic [bytes]: 238 
Tot.1 network overherd [bytes]: 244 



28 

Copying Window to Window 

Objective: To examine the network lodd involved in copying a 100x100 
square pixels from window to window. 

X Client Call: XCopyArea, combines (copies) the specified rectangle of STC with 
the specified rectangle of dest. Both SIC and dest must have the 
same root and depth. 

Network Traffic: 

Total Ethernet packets sent by X client: 2 
Total Ethernet pckets sent by X server: I 
Total X client data generated [b+ee]: 32 
Tot.1 X server d.t. generrted [b,tes]: 32 
Total X traffic [bytes]: 84 
Total network traffic [bytes]: 244 
Total network overhead [b+tes]: 188 

Moving Window 

Objective: To examine the network load involved in moving a child 
window. 

X Client Call: XMove Window, changes the position of the origin of the specified 
window relative to its parent. 

Network Traffic: 

Total Ethernet packets sent by X client: 2 
Total Ethernet pckets sent by X serrer: 1 
Total X client data generated [bytes]: 24 
Total X merver data genersted [bytes]i aa 
Total X traffic [byte.]: 58 
Tat-1 network traffic [bytes]: 238 
Total network overherd [bytes]: 188 

R&sing Window 

Objective: To examine the network load involved in changing a window’s 
size. 

X Client Call: XResire Window changes the inside dimension of the window. 
The border is iesized to match but its border width is not 
changed. 

Network Traffic: 



29 

Total Ethernet packete sent by X client: 2 
Tot.1 Ethernet packets sent by X ser.er, 1 
Total X client data generated [bytes]: 24 
Tctal X serrer data generated [bytes]: 3Z 
Tots1 X traffic [bytes]: 68 
Total network traffic [bytes]: 238 
Total netrcrk orerhead [bytes]: IS3 

Moving a Pointer 

Objective: Move the pointer suddenly from one point on the screen to 
another. 

X Client Call: X WarpPointer 

Network Traffic: 

Total Ethernet packets sent bp X client: 2 
Tat-1 Ethernet packet. sent by X ser.=,-: 2 
Total X client data generated [bytee]: 28 
Tot-1 X server data generated [byte.]: a2 
Total X traffic [bytea]: 88 
Total network traffic [bytes]: a+34 
Tote1 network overhe.d [bytes]: 244 

Creating Graphic Resources 

Objective: Creates a new graphics resource in the server. 

X Client Call: XCreateGC 

Network Traffic: 

I I 
Tot.1 Ethernet pack-to sent by X client: 2 
Total Ethernet prcket. sent by X servel~ 1 
Tot-1 X client data gensrrted [bTtes]r 28 
Tots.1 X serves d.tr genersted [b,tee]r 3!d 
Total X traffic [bytes]z 88 
Total network traffic [bytea]: 248 
Tot-1 network overhead [bytes]: 18~3 

/ 1 

Destroy Sub-windows 

Objective: Destroys all descendants of the specified window (recursively). 

X Client Call: XDestroySubwindows 

Network Traffxc: 



L 

Tot.1 Ethernet p.cketa sent by X client: 2 
Tot.1 Ethernet packet. sent by X merver: ,I 
Tot.1 X client d.t. generated [bytes]: 12 
Tot.1 X server d.t. genersted [bytes]: 32 
Tot.1 X tr.ffic [bytes]: 44 
Tot.1 network tr.ffic [byte.]: 224 
Tot.1 network orerhesd [bytes]: 188 

Clearing Windows 

Objective: Clears a window, but does not cause exposure events. 

X Client Call: XClear Window 

Network Traffic: 

Tot.1 Ethernet psckets sent bp X client: 2 
Tot.1 Ethernet p.ckets sent by X .e~ver: a 
Tot.1 X client d.t. gener.ted [bytes]: 28 
Tat.1 X .erver d.t. gener.ted [byte.]: 32 
Tat.1 X traffic [byteslr 62 
Tat.1 network traffic [byte.]: 286 
Tot-1 network overherd [bytes]: 244 

Getting Window Attributes 

Objective: Returns the XWindowAttributes structure containing the current 
window attributes. 

X Client Call: XGet WindowAttributes 

Network Traffic: 

Tot.1 Ethernet p.cket. sent by X client: 4 
Tot.1 Ethernet p.ekets sent by X server: a 
Tot.1 X client d.t. generated [bytes]: aa 
Tat.1 X .ervcr d.t. genarrted [bytes]: 188 
Tot.1 X tr.ffic [bytes]: 12s 
Tot.1 network trrffic [bytes]: 542 
Total network overhead [byte.]: 414 

Freeing Graphic Context 

Objective: Frees all memory associated with a graphics context, and removes 
the GC from the server and display hardware. 

X Client Call: XFreeGC 

Network Traffic: 



31 

Tot.1 Ethernet packets sent by X client: 2 
Tot.1 Ethernet packets sent br X servers 1 
Tot.1 X client dat. gener.ted [bytes]: 12 
Total X server dat. generated [bytes]: 32 
Tot.1 X traffic [bytes]: 44 
Tot.1 network trsffic [bytes]: 224 
Tot.1 network arerhe.d [b,te.]: 188 

Destroying Window 

Objective: The window and all inferiors (recursively) are destroyed, and a 
DestroyNotify event is generated for each window. 

X Client Call: XDestroy Window: 

Network Traffic: 

Tot.1 Ethernet packets sent by X client: Z? 
Tot.1 Ethernet prckets sent by X server: 2 
Tot.1 X client drt. gener.ted [bytesIx 12 
Tot.1 X server dat. generated [b,+.es] : 32 
Tot.1 X trrffic [bytes]: 44 
Tot.1 network trsffic [byte.]: 288 
Tat.1 network overhead [bytes]: 244 

Appendix B provides the synopsis and the raw data collected for each of these X 
requests. 

4.4. Examples of X Graphical Primitives 

The following is the listing of all the graphicaf requests under study which were 
generated by the zllperf application and a summary of their network activities 
captured by the network monitoring tool. 

The network traffic summary is as explained earlier. 

Appendix B provides the synopsis and the raw data collected for these graphical 

primitives. 

Drawing Pointa 

Objective: To examine the network load involved in 
points. 

drawing 1000 

X Client Call: XDrawPoints. draws one or more points into the specified draw- 
able. 

Network Traffic: 



32 

Tat-1 Ethernet packets sent by X client: 5 
Tot.1 Ethernet packets sent by X server: 2 
Tot-1 X client dsta generated [bytes]: 4818 
Total X eerier data generated [bgtes]: 32 
Total X traffic [bytesj: 4848 
Total network traffic [bytes]: 4488 
Total network owerhead [bytes]: 428 

Drawing Lines 

Objective: To examine the network load involved in drawing 1000 lo- 
pixel thin lines. 

X Client Call: XDrawLines, draws a series of lines joined end-to-end. 

Network Traffic: 

Total Ethernet packets sent by X client: 5 
Total Ethernet prckets sent by X merver: 2 
Total X client data generated [bytes]: 4828 
Total X ~er.er drta generated [byte.]: 32 
Total X traffic [bytes]: 4862 
Total network traffic [bytes]: 4412 
Total network overhead [bytes]: 428 

Drawing Text 

Objective: To examine the network load involved in writing an 80 
character string in (6x13) font. 

X Client Call: XLoadQueryFont, loads a font and till information structure. 

Network Traffic: 

Tat-1 Ethernet psckete sent by X client: 4 
Tot.1 Ethernet packets sent by X eerver: a 
Total X client data generated [bytes]: 28 
Total X server dat. generated [bytes]: 1788 
Tot-1 X traffic [bytes]: 1824 
Total network traffic [bytes]: 224.4 
Total network overhead [brteaj: 428 

X Client Call: XChangeGCfl 

Network Traffic: 



33 

Total Ethernet packets sent by X client: Z 
Tot.1 Ethernet packets sent by X serveri 2 
Total X client dstr genersted [bytes]: 28 
Tot-1 X server d-t.. generated [bytes]: 32 
Total X traffic [bytes]: 62 
Total network traffic [bytes]: 282 
Tats1 network overhead [bytes]: IS@ 

X Client Call: XDrawString(j 

Network TrafG: 

Total Ethernet prckets sent by X client: 2 
Total Ethernet psckete sent b, X server: 1 
Total X client data generated [bytes]: 184 
Tot.1 X server data generated [bytes]: 32 
Tots1 X traffic [bytes]: 1813 
Total network traffic [bytes]: 31~3 
Tat.1 network overhead [bytes]: 188 

X client Call: XFreeFontfl 

Network Traffic: 

Tot-1 Ethernet pack&B sent by X client: 2 
Total Ethernat packet. cent by X merver: 2 
Total X client data generated [bytes]: 12 
Total X server data generated [b,tes]: 32 
Total X traffic [bytes]: 44 
Tot-1 natrork traffic [bytes]: 288 
Total network overhead [b,tea]: 244 

Drawing Image 

Objective: To examine the network load involved in drawing a 100x100 
pixels image on a window. 

X Client Call: XPutImage , Draws a section of an rectangle in a window or pix- 
RlCLp. 

Network Traffic: 

Total Ethernet packets sent bT X client: 18 
Total Ethernet packets sent by X server: 8 
Total X client data generated [bytes]: 18828 
Total X server data generated [bytes]: 32 
Total X traffic [bytes]: lBBBB 
Total network traffic [bytes]: 18789 
Total network overhead [bytes]: 648 



34 

Getting Image 

Objective: To examine the network’ load involved in getting a 100x100 
pixels image. 

X Client Call: XGetfmage, dumps the contents of the specified rectangle, a draw- 
abie, into a client-side Xhage structure, in the format specified. 

Network Traffic: 

Total Ethernet packets sent by X client: 13 
Tot&l Ethernet packets sent by X eerver: 8 
Total X client data generated [b+zs]: 24 
Tot-1 X 8er.e~ dat. generated [bytes] : 18Ci84 
Total X traffic [byte.] : l&788 
Total network traffic [bytes]: lBZ&Y 
Total network orerhead [bytes]: 838 



35 

5. X Protocol Network Delay Measurements 

5.1. Objective 

The objective of this section is to estimate the X Protocol network delay ex- 
perienced between the X server and client processes communicating through TCP 
streams. The measured delays are then tabulated for the graphical primitives under 
study. 

5.2. Procedure 

Two remote hosts and a local hosts were chosen to represent typical communica- 
tion paths over a LAN and a WAN configuration. 

In the LAN configuration discussed in the next section the remote and local hosts 
were located in two separate subnetworks of Ethernet LAN. The connectivity be- 

tween the subnets was established by the help of two routers and a backbone 
Ethernet between them. 

In the WAN configuration discussed in section 5.4 the local host remain the same 
as the LAN configuration, however, the remote host was located in a remote 
Ethernet subnet. The connectivity between the remote and local subnets was es- 
tablished through the ESnet Wide Area Network. 

The err&X application was started as a server on the remote hosts and was 
queried by the emulX client running on the local host: 

The measurements on network delays were done for the request and reply sizes of 
the graphical primitives of interest. 60 sample points were logged in for each 
graphical primitives at prime working hours of 10 a.m to 11 a.m and 2 p.m. to 3 
p.m. on weekdays for a period of two weeks. 

The average network delays were then tabulated and summarized for the two net- 
work configurations. 

The system configuration of the local host where the client is running had to be 
changed to increase its clock resolution from the default setting of l/l00 HZ (10 
msec) to l/l800 HZ (0.5 msec) which was the highest clock resolution available. 
The high resolution was necessary especially in the LAN configuration where typical 
communication delays are much lower than default system clock resolution of 10 
msecs. 



36 

5.3. LAN Configuration: X Protocol Network Delay Estimates 

The client and the server were invoked on’ ttio hosts located in two separate sub- 
networks connected by two CISCO routers. The entire LAN is comprised of over 

50 subnetworks connected by backbone Ethernet. 

The traceroute [TRACEROUTE] p ro ram was used to identify network devices be- g 
tween the two hosts. Figure 10 provides the schematics for this LAN configuration. 

Figure 10: Schematic of the LAN Configuration 

Table 1 provides the summary of the network loads and delays associated with the 
X client requests under study. 



37 

Average Network Loads and Delays in a LAN 

I X Client Requests 
I 

NetiKork-Load[bytes] Average Delay[ms] 
and Standard Deviation 

7.1, 1.9 I Opening Display 760 

Create a Window 192 6.2, 2.1 I 

Change Window 
Attributes I 

240 6.0, 1.6 

I 

1 Map Window 6.2, 1.8 

Move Pointer 304 6.9, 1.8 

Create Graphic 240 6.9, 2.6 
context 

Destroy Subwindow 224 5.6, 1.8 

Clear Window 
I I 

296 6.3, 2.4 

1 Get Window Attributes 6.4, 2.0 

Free Graphic Context 224 6.9, 2.3 

Destroy Windows 288 5.7, 1.6 

1 Drawing 1000 points 18.1, 2.8 

Drawing 1000 lO-pixel thin 
lines 

4472 19.2, 2.6 

I 

1 Querv and Load a Font I 14.6, 2.1 

Writing an 80 character 
/ 

316 
6x13 font 

9.2, 2.5 
I 

6.8, 2.1 I Free Font 

Copying a 100x100 square 
pixels from window to 
window 

288 

244 6.3, 1.8 

Drawing a 100x100 pixels 

I 

10709 
image 

69.2, 15.5 

I 

Getting a 100x100 pixels 

I 

10926 
image 

71.2, 41.8 

I 

1 Moving a window 6.1. 2.1 

Resizing a window 236 6.2, 1.8 

Table 1: Average Network Load and Delay for 
X Client Requests in a LAN 



38 

5.4. WAN Configuration: X Protocol Network Delay Estimates 

The client and the server were invoked on ‘3~16 hosts located in two separate sub- 
networks. The subnets were connected through their Ethernet backbone and the 
ESnet Wide Area Network. 

The traceroute program was used to identify network devices between the two 
hosts. Figure 11 provides the schematics for this WAN configuration. 

I 

I 
, one hW 

. 

Router “I Remote Subnet 134,x1 81 

s” Remote Host PdSf.SSC.90” 

I 

' muter 
Fvxter v I IV 

TiIzz-lH~~ 

I 
I 

I 
I 

I 

I 

I 
I 

mnet Nilfbwml 
B?,CkbO"F T I Ll"X 

Remote Backbons Ethernet 

Figure 11: Schematic of the WAN Configuration 

Table 2 provides the summary of the network loads and delays associated with the 
X client requests under study. 



30 

Average Network Loads and Delays in a WAN 

X Client Requests Netwoik-Load[bytes] Average Delay[ms] 
and Standard Deviation 

Opening Display 760 43.5, 7.3 

Create a Window I 192 I 43.8, 6.5 I 

Change Window 
Attributes ! 

240 

/ 

40.3, 5.7 

I 

Map Window 288 43.3, 5.9 

Move Pointer 304 52.6, 5.7 

Create Graphic 
context I 

240 
I 

38.2, 4.6 
1 

Destroy Subwindow 
I I 

224 38.9, 7.4 

1 Clear Window I 296 I 42.2. 4.9 I 

Get Window Attributes 542 45.3, 7.2 

Free Graphic Context 224 43.3, 7.7 

1 Destroy Windows I 288 I 48.3, 6.4 I 
Drawing 1000 points 4468 84.6, 10.1 

Drawing 1000 lo-pixel thin 4472 78.9, 10.7 
lines 

Query and Load a Font 2244 35.6, 8.8 

Writing an 80 character 316 30.7, 5.1 
6x13 font 

Free Font 280 30.9, 4.5 

Copying a 100x100 square 
pixels from window to 
window 

244 43.3, 6.0 

Drawing a 100x100 pixels 10709 297.3, 42.2 
image 

Getting a 100x100 pixels 10926 276.3, 51.1 
image 

Moving a window 236 41.3, 6.2 

R&zing a window 236 39.3, 5.6 

Table 2: Average Network Load and Delay for 
X Client Requests in a WAN 



40 

6. Network Traffic Profile: LAN Configuration 

6.1. Objective 

The objective of this section is to briefly describe the Simple Network Management 
Protocol (SNMP) [SNMP] which was instrumental in gathering network statistics 
for the LAN configuration. The statistical observations are used later on in the 
queuing analysis of the LAN configuration. 

6.2. Network Monitoring Tool: SNMP 

SNh4P (Simple Network Management Protocol) is a lightweight network manage- 
ment protocol for TCP/IP networks which was created to help monitor network 
performance, configure network devices, and detect network faults. SNMP evolved 
from the SGMP (Simple Gateway Monitoring Protocol) protocol in 1988 and has 
bee” deployed in networks since early 1989 [ROSE]. 

SNhfP allows a network management station to communicate with the managed 
network entities. Each of these network entities, such as hosts, routers, printers, 
etc., must run agent software implementing the SNMP protocol which will update 
network management data about managed objects (e.g., packet counts, types, sizes, 
etc. ) on that entity and retrieve this data when requested to do so by the net- 
work management station. The managed objects are collectively referred to as the 
Management Information Base (MIB). 

The network management station monitors the network by communicating with the 
SNMP agents on the network entities (hosts, routers, etc.), collecting data about 
the managed objects from them, and providing applications and reports which allow 
the network administrator to monitor faults and analyze the data. Figure 12 il- 
lustrates a network configuration in which a network management station monitors 
and manages other network entities through SNMP protocol. 

The network statistics for the two routers (network entities) with the LAN con- 
figuration tested were obtained by querying their SNMP agents for information on 
their Interface group. The Interface group is a group of managed objects that con- 
tain generic information about the interface (physical) layer of the network entity. 
The following is the list of managed objects that were queried from the SNMP 
agents: 

. ifIndex: interface number 

l ifInOctets and XOutOctete: number of bytes received/sent (counter). 

. XhUcastPkts and XOutUcastPkts: number of unicast (not 
broadcast/multicast) packets accepted/sent (counter). 



/ \ 

Network Local segment 
MWlagWW”t 
StatIOn 

\ 1 

1 I 
I I 

C- iSNIP PrOtoCOII~ 

Local segment 

Backbone 
Link 

41 

Router or brldg 
runntng SNMP 
agent 

1 

t r.NMP PrOtwO 

1 

1 I I - !SNMP Protocol, - Router or brldgc 
running SNnP 
agent 

Figure 12: Schematic of a Network Configuration Managed by SNMP Protocol 

. 3hNUcastPkts and ifOutNUcastPkts: number of non-unicast 
accepted/sent (counter). 

l KInDiscards and ifOutDiscards: number of incoming and outgoing 
packets discarded due to resource limitations (counter). 

l XInErrors and ifOutErrors: packets discarded due to format error. 

l i&UnknownProtos: number of packets with unknown protocol received 
(counter). 

Figure 13 illustrates the Network data obtained by querying the routers’ SNMP 
agents. 

As is shown, packets arrive at the interface (physical) layer from the layer below 

( transmission medium). The good packets (packets with no error or known 
protocol) are delivered to the above layer (IP) with the counters representing their 

type (e.g., i&UcastPkts) updated. The bad packets (packets with error, unknown 
protocol, etc.) are discarded and their corresponding counters updated. 



42 

Layer Above 

if InUcastPkts* 
If InNUcastPkts 

iflnDiscards 

iflnUnknownProtoS 

if InErrors 

- - - 

ifOutUcastPkts* 
ifOutNUcastPktS 

(fOutErrors 

lfOutDiscards 

Layer Below 

Figure 13: SNMP Network Statistics for the Interface Layer 

As packets arrive from the above layer to the interface layer for delivery the out- 
going packet statistics are also updated. 

The network management station monitors network entities by accessing their 
statistics through SNMP protocol. 

6.3. Procedure 

With the help of a Network Management Station (NMS) the routers involved in 
the LAN configuration were queried for a period of about 4 weeks on week days 
to determine the average packet rate and size distribution. The querying periods 
were chosen to be during the high traffic hours of 1O:OO a.m. to 11:00 a.m. and 
2:oo p.m. to 3:oo p.m. During those hours SNMP messages were sent to the 
SNMP agents of the routers with their responses logged in at five minutes interval. 
Five hundred eleven of such reports were collected to obtain the following obser- 
vation on the characteristics of the routers involved in our LAN configuration. 



43 

The responses coming from the SNMP agents such as iJInOctets are counter v&es 
and the actual data is the difference between the report at time t+300 and t. This 
difference was then divided by the elapsed time (300 seconds) to obtain an average 
rate. 

The average packet rate was determined by subtracting all of the incoming packet 
counter reports at time t from all of the incoming packet counter reports at time 
t+300 for the two network interfaces of the router and then dividing the difference 
by the interval time of 300 seconds. 

The average bit rate was determined from the difference of incoming bytes counters 
at two consecutive time interval multiplied by 8 and dividing it by the elapsed 
time. 

The average packet size was determined by dividing the total received bytes by the 
total number of packets received during the same time interval. 

6.4. Network Statistics on Router I 

The following is a summary of the traffic profile observed on router-1 with the In- 
ternet address of 131.225.85.200 at high traffic hours for a period of 4 weeks. 

Input Traffic Profde 

Packet Rate: The minimum input packet rate is the minimum of all the average 
packet rates observed during the high traffic hours. The average input packet rate 
during high traffic hours was determined by averaging over all the average packet 
rates during querying interval (300 seconds). The maximum input packet rate is 
the maximum of all the average packet rates observed during the high traffic 
hours. 

Bit Rate:The minimum, average, and maximum bit rate are determined similar to 
the packet rate calculations. 

Average-Packet-Size Distribution: The minimum input packet size is the min- 
imum of all the average packet sizes observed during the high traffic hours. The 
average input packet size during high traffic hours was determined by averaging 
over all the average packet sizes during querying interval (300 seconds). The max- 
imum input packet size is the maximum of all the average packet sizes observed 
during the high traffic hours. 

Table 3 summarizes input traffic profile obtained from router I. 

Figure 14 is a graphical representation of average input packet size distribution on 
router-1 during high traffic ho&. 



44 

Input Rate Statistics 
I 

Min Max Median Average Std. Dev. j 

Packet Rate 102.3 1 319.1 161.6 166.6 I 31.2 
(packet/set) 

Bit Rate 

I 

86.3 / 560.4 139.8 148.8 42.7 
[Kbit/sec) 

Packet Distribution 90.8 
(bytes/packet) 

168.6 105.5 109.7 12.9 

Table 3: Router-I Input Traffic Profile Statistics 

Average Packet-size Distribution 
Router-1 

Figure 14: .4verage Input Packet-size Distribution on Router-I 



45 

Output Ttaffc Protile 

Packet Rate: The following packet rate values were determined similar to the the 
input packet rate calculations described previously. 

Bit Rate: The bit rate values were determined similar to the the input bit rate 
calculations described previously. 

Table 4 summarizes output traffic profile obtained from router I. 

Packet Rate 
(packet/set) 

Bit Rate 
(Kbit/sec) 

Output Rate Statistics 

Min MaX Median Average Std. Dev. 

98.6 315.5 158.3 163.6 36.8 

84.0 555.7 136.7 146.4 46.2 

Table 4: Router-I Output Traffic Protile Statistics 

6.5. Network Statistics on Router II 

The following is a summary of the traffic profile observed on router-11 with the In- 
ternet address of 131.225.199.200 at high traffic hours for a period of 4 weeks. 

Input Traffh Profile 

Packet/Bit Rate: The description of the minimum, average, and maximum 
packet/bit rates are similar td the router-1 values as described earlier. 

Average-Packet-She Distribution: The description of the minimum, average, 
and maximum packet sizes are similar to the router-1 values as described earlier. 

Table 5 summarizes input traffic profile obtained from router II. 

i 

Input Rate Statistics 

Mii Max Median Average Std. Dev. 

Packet Rate 86.2 295.7 104.9 111.4 25.1 
(packet/sac) 

Bit Rate 84.7 573.9 102.9 123.1 76.7 
(Kbit/sec) 

Packet Distribution 104.2 272.2 123.4 128.2 22.3 
(bytes/packet) 

L 

Table 5: Router-II Input Traffic Profile Statistics 



46 

Figure 15 is a graphical representation of average input packet size distribution on 
router-11 during high traffic hours. 

Average Packet-size Distribution 
Router-II 

120 

100 

50 

Figure 15: Average Input Packet-size Distribution on Router-II 

Output Traffic Profile 

Table 6 summarizes output traffic profile obtained from router II. 

Packet Rate 
(packet/xc) 

Bit Rate 
(Kbit/sec) 

Output Rate Statistics 

Min Max Median Average Std. Dev. 

82.2 285.5 99.8 105.7 24.7 

81.5 575.8 100.5 121.2 77.5 

Table 6: Router-II Output Traffic Profile Statistics 

The input statistics (e.g., packet rate) on both routers are slightly greater than 
their corresponding output statistics (e.g., the average input packet rate on router I 



47 

is 166.6 packet/set while the average output packet rate is 163.6 packet/xc with 
greater standard deviation). This phenomenon is due to the fact that some of the 
input packets are not forwarded due to S&E errors or more likely the input pack- 
ets were addressed to the router itself. In general, as might be expected, the router 
increases the variation in rate going from input to output. 



48 

7. Network Device Maximum Throughput Measurements 

7.1. Objective 

The objective of this section is to determine the maximum throughput of the 
routers in bits/set in the LAN configuration. This value is necessary in the con- 
struction of the queuing model. 

7.2. Flooding Experiment Procedure 

The technique used in measuring the network device maximum throughput was to 
send (flood) streams of Ethernet packets at different packet rates and sizes until 
the router is overwhelmed. A ping program with a special flooding feature which 
sends ICMp6 messages as fast as possible was used by several “packet generator” 
machines concurrently on the local area network to achieve the input bit rate re- 
quired for router saturation. 

The saturation point was considered reached when the router started dropping 
packets to protect itself. The observed bit rate at the saturation point is then an 
estimate to the network device maximum bit rate throughput. This experiment was 
done at times when the network load was very low from sources other than the 
test sources so as to provide a control environment for the experiment and also to 
avoid inconveniences to network users caused by the routers momentary saturation. 

Different number of packet generating machines were chosen to flood the router 
concurrently. During the flooding period another machine not involved in generating 
packets was acting as an Network Management Station (NMS) and querying the 
router via SNMP messages for statistics on the interface (physical) layer which in- 
cludes total number of bytes/packets received or sent by the network router. 

By increasing the ICMP packet size sent by each machine to the router the overail 
throughput was increasing until the saturation point was reached. Beyond that 
point the router performance degraded significantly as majority of the ICMP mes- 
sages coming from “packet generators” were left unreplied. 

The SNMP messages were sent to the router’s SNMP agent at fixed intervals. It 
was assumed that the responses from the SNMP agent would also be received at 
fixed interval. This, however, turned out to be wrong assumption, since during the 
flooding period the querying SNMP packets were either lost or the SNMP agent 
was slow in responding which resulted in getting responses at variable time inter- 
val. Without an accurate time interval one could not obtain an accurate rating 
values from the SNMP messages. 

Jlnterner Control Message Protocol. This protocol is used to handle error and control inIormation between 
gateways and hoata. The ping program sends ICMP meemges to the hosts or gatewltys and awaits reply 
messages from them. The lCMP messages are usually generated and procestled by the TCP/IP networking 
software itself, and not User processes 



49 

At this point it was decided to proceed with experiment with a passive approach. 
In this approach while the ICMP message generating machines were flooding the 
router and the router was reaching its -saturation point another machine not in- 
volved in packet generation was designated to capture packets that were destined 
to or sourced from the router with the help of the tepdump application described 
earlier. 

The output of the tcpdump application was saved in a packet trace tile for dif- 
ferent experiments run. 

The trace tile includes one line of information about every packet that was trans- 
mitted by the packet generating machines or the flooded router during the flooding 
experiment. The summary line shows the packet’s source and destination IP ad- 
dress, timestamp, length, and type. 

Figure 16 illustrates flooding experiment set up. 

Host r”““l”a TCPD”“P 

?t 

c 

HO,t mgtng RwtCr I 

Host ptngmg RwtCr I 

I’ LG& 
Host p,ng,ng Router I 

cc 

HDll runnmg tra,,,c monltol 

1 

Figure 16: Flooding Experiment Test Bed 

An analysis program was created to parse the trace file for a summary of input 
packet rate to the router during the flooding experiment. The input bit rate to the 
router was also determined from the length field in each packet summary line. 



The trace file was also parsed to obtain a summary of output packet rate from 
the router. The output bit rate was determined from the length field in each 
packet summary line. 

The maximum throughput of the router in bit rate is therefore the maximum ob- 
served traffic originating from the router. This approach assumes that the observed 
bit rate on one interface is the maximum achievable throughput by the router and 
that the traffic on the other interface is insignificant. Indeed prior to the experi- 
ment the traffic on the other interface was measured and confirm to be minimal. 
This was due to the fact the experiment was done at times when there were al- 
most no network traffic present in the LAN. 

The following observations should be noted for the preceding experiment set up. 
First of all, the current set up does not allow to observe the effect of packet rate 
and bit rate on the router separately. A better approach would be to create the 
packet stream with a single source with ability to control the interpacket gaps and 
packet sizes. This way the packet rate and bit rate can be change by changing 
the gap size and packet size independently. This approach could yield a better es- 
timate for packet and bit rate saturation points. 

Secondly, in the current set up the saturation point could also be affected by the 
Ethernet channel acquisition delay. That is because the ICMP replies are sent from 

the router to the ICMP “packet generators” on the same segment. 

Finally, it should be noted that this experiment only measures the router maximum 
throughput when packet generating machines are flooding it with ICMP messages 
created by the ping application. This means there are some extra processing in- 
volved in the ICMP packet processing at the network layer (IP). This extra 
processing includes packet assembly for the incoming messages and fragmentation 
for reply messages. It is quite possible that the observed saturation point due to 
ICMP packet processing is lower than saturation point due to IP packet forwarding 
process. 

A more ideal experiment would be to measure the router tiaximum throughput 
when input packets are simply routed or forwarded at the IP layer to another sub- 
net on the other side of the router. This way the channel acquisition delay effect 
is out of the picture since the outgoing packets are forwarded to the segment with 
no Ethernet traffic. The IP packet routing which is viewed as any router’s main 
activity requires less processing that ICMP reply processing and this could result in 
a higher saturation point and consequently greater device throughput. 

Such an ideal experimental set up is currently under development. 



51 

7.3. Flooding Experiment Results 

The following table summarizes the obs&ations made during the flooding experi- 
ment. 

Input To Pouter-I Output From aouter- 
----_-__-----_-__--_ ____---__--__---__-__ 

Number ICMP Yese.ge Pkt-r.te Bit Ihte Pkt-rate Bit Rate 
of Ho*tlr I&t=1 [Pkt/sec] WP~I [Pkt/sec] WPsl 

1 ,kla 00 0.64 a(1 8.54 
1 lrlllel 81 0.9, 80 B.08 
1 a,00 196 1.m 18a 1.80 

a 100 Isa B.8, 1aa 8.8, 
2 1400 14, 1.70 147 1.,B 
a a000 am3 3.80 la* 1.00 

4 780 25, 1.58 I** 1.10 
1 1400 410 4.74 241 a.80 
1 a000 586 4.81 3.8 0.48 

, 780 464 2.W 186 0.!3!3 
, 14*0 800 7.01 aa* 2.7a 

Figure 17 provides a graphical observation made from the flooding experiment 
result in the above table. 

This graph represents the router’s observed output bit rate during the experiment 
as a function of observed packet rate traffic into the router. Three plots for dif- 
ferent message sizes (700, 1400, and 2000 bytes) are presented in order to also es- 
tablish bit rate saturation effect. 

As was suspected the service rate capacity of the router is a function of byte 
processing (packet size) as well as packet processing (the number of incoming pack- 
ets). 

The router showed its best performance (output bit rate) when 4 machines were 
flooding it with the ICMP packet size of 1400 bytes. 

The maximum throughput for the router in processing 1400 ICMP packets is 2.8 
Mbp. 



52 

Router-I Throughput Characteristics 
in Flooding Experiment 

3.0 - 

IcMP Message Size . 

G 
2.5- - 700 Bytes 

-I*- 1400 Bytes 
7 t 2000 Bytes 
z 2.0 - 
: 
Ds 

/ 0.0 , , I 6 
1 I t 

0 100 200 300 400 500 600 700 

Ethernet Input Packet Rate to Router-I (pkthcc) 

Figure 17: Router-1 Throughput Characteristics in Flooding Experiment 



53 

8. Analytical Modeling of LAN Configuration 

8.1. Objective 

The objective of this section is to create an analytical queueing model of the net- 
work between the X server and client processes and obtain a closed form solution 
for the network delays experienced. The aim is to create the model for a small 
network, validate its predictions and then expand the model for larger networks. 

8.2. Queuing Model Introduction 

Queuing theory is one of the most important tool for quantitative analysis of corn- 
puter networks. A simple queueing model consists of a a waiting line (buffer) 
where customers (packets) are awaited for services, a server with some service rate 
capacity mu, and some customer (packet) arriving rate. A more complete treatment 
of the queuing theory and its applications to networking can be found in Schwartz 
[SCHWARTZJ. Such queuing models can be used to quantify the time delay, block- 

ing performance, and packet throughput of a networking system. These performance 
parameters are known to depend on the probability of the state of the queue or in 
other words the number of the packets on the queue (including the one in service). 
To calculate the probability of number of the packets in the queue one must have 
the knowledge of: 

1. The packet arrival rate. 

2. The packet length distribution, assuming that service time is directly 
proportional to the packet length. 

3. The service discipline. 

M/M/l Queue 

The M/M/l queue is the simplest model of a queue. This model implies that: 

. The interarrival time has a Poisson distribution. 

l The service distribution (Packet length) is exponential. 

. There is only one server ‘and the service discipline is First Come First 
Served (FCFS). 

l The queue has infinite buffer. 

In analysis of the M/M/l queue one can derived the mean number of packets in 
the system (I%‘) to be [TANENBAUM]: 



54 

Where: p (Traffic Intensity) is defined as: Packet-Rate/Service-Rate. 

D.C. Little [LITTLE] provided the well known Little’s results which states that a 
queuing system with average packet arrival rate (A) and mean time delay (T) 
through the system, has an average queue length (N) given by: 

(2) 

where: 

T: average delay. 

N: average number of packets in the queue. 

P: average packet-rate. 

Combining equations (1) and (2) one could get the total waiting time, including 
the service time to be: 

1 

Networks of M/M/ 1 Queues 

The results derived from the previous section can be directly applied to our LAN 
configuration if each router can be modeled as an M/M/l queue. 

Kleinrock [KLEINROCK] was one of the first to apply the application of queuing 
theory to a communication channel. In this application the mean queuing and 
transmission delay for every node on the network is derived to be: 

(3) 

where: 

lla: 

c: 

A: 

mean packet size [bits/packet] 

capacity of communication channel [bits/set] 

packet arrival rate [packet/set] 



55 

T: mean delay per pack&[& 

The service rate capacity (C) in equation. (3) was taken to be equal to the com- 
munication channel capacity rate according to Tanenbaum [TANENBAUM]. This 
assumes that the packet processing time is negligible compare to the transmission 
delay and as a results the service time per packet is mainly due to the packet 
transmission time. 

This assumption does not apply to our LAN environment where transmission rate 
is no longer the communication bottleneck. A study of the network which encom- 
passes our LAN configuration has shown that on the entire network the average 
utilization is about 5.94% of Ethernet channel with the peak of 8.49% !PABRAI]. 

By changing the definition of the C parameter in the equation (3) from com- 
munication channel capacity to network device maximum throughput one could 
derive the queuing delay (packet processing as well as packet transmission) for 
every node on the network. 

Additional delay is involved in our Ethernet LAN environment and that is the 
delay associated with the channel acquisition. There have been many studies on the 
subject of analytical modeling of CSMA/CD protocols. 

Metcalfe and Boggs derived a simple formula for prediction of the capacity of 
finite-population Ethernets [METCALFE]. L am used a single-server queueing model 
in which the server is the shared channel to obtain expressions for delays and 
throughput [LAM]. Tobagi and Hunt applied the method of embedded Markov 
chains [TOBAGI] to more accurately model CSMA/CD. Franta also obtain solu- 
tion for delay by modeling the communication channel as a single server queueing 
model. The service time for a packet is given by the time required to send the 
message over the channel; a time determined by the length of the message and the 
speed of the channel [FRANTA]. 

In our LAN configuration the output of several lines are converged to the routers 
in the LAN. Thus the input to one router is no longer a Poisson process outside 
the network, but the sum of the outputs of several other networks as describe in 
[TANENBAUM] section A.3. However, Jackson [JACKSON] has shown that an 
open network of M/M/l queues can be analyzed on individual basis and the total 
delay would be equal to the sum of all delays experienced in each queue. 

In general Poisson streams have the following properties: 

l Merging of k Poisson streams with mean rate results in a Poisson 
stream with a mean rate equal to the sum of the input rates. 

. The arrival of a Poisson stream to a service center with exponential ser- 
vice time results in the departure Poisson stream with the same mean 
rate. 



56 

8.3. LAN Configuration: A Network of M/M/l Queues 

Our LAN configuration consists of two ho&s -running X client and server processes 
in separate Ethernet subnets. The subnets are connected to each other with two 
routers and a backbone Ethernet. The message delays between the two processes is 
the sum of queuing delays in the routers (two router, two queuing delays), the 
CSMA/CD packet transmission delays (there are three of these), and packet 
processing delays in the network and interface (physical) layers of each hosts. 

It should be noted that simple summation of individual delays to get the overall 
delay in the system is based on the assumption that all queues within our system 
can be characterize as M/M/l queue. 

Figure 18 is a graphical representation of our LAN configuration analytical model. 

Local Host 
CdS”“.f”SQO” 

x SwYEr 

Es 

BOX I 

tommu”rcatlO” Layer 
Dela” 

fij$zq 

E $q 
Remote Host I”lZ6O.f”~kjO” 

BOX 3 

C~MA/‘D 
channel 
*O”tSltGa 
Delay on 
Backbone 
Etnerner 

Figure 18: Analytical Modeling of. LAN Configuration 



57 

8.4. Routers Queueing Delay 

As is shown in the Figure 18. the routers in our LAN configuration are modeled 
as a network of M/M/l queues. The followings are the arguments for such assump- 
tions: 

Poisson Arrival Rate Assumption 

The assumption of an exponential interarrival probability (Poisson arrival) is 
reasonable for any system that has a large number of independent customers 
[TANENBAUM]. The Ethernet subnet in our LAN configuration contains over 100 
computers communicating with each other and other subnets through router-I. 

Exponential Service Time Assumption 

It is assumed that the service time is directly proportional to the packet size and 
if the packet size distribution is exponential one can confidently argue that the ser- 
vice time on each packet is also exponential. 

Figures 14 and 15 provide a graphical representation of average-packet-size distribu- 
tion in our LAN routers for a period of four weeks. As is shown the average 
packet-size distributions have close resemblance to an exponential distribution. 
Several studies [SURI] have shown that a slight departure from the exponential as- 
sumption does not make a significant difference in the result. 

Queuing Delay on Router-I 

Averaga Packet Siasr 1tW.7 bytes 
Service Pate Capacity: 2.8 Ybps 
Average Arrird Bate: 1Bfl.B pkt/sec 

From equation (3) one can calculate the average delay xach packet would ex- 
perience in this router to be 0.33 msec. 

Queuing Delay on Route-11 

Average Psckst Sizer 12S.2 bytes 
Service hte Capacity: 2.8 Mbps 
Average h-rival Patei 111.4 pkt/sec 

From equation (3) one can calculate the average delay each packet would ex- 
perience in this router to be 0.38 msec. 

Total LAN Configuration Queuing Delay 

The overall average delay experienced by each packet in our LAN configuration 
routers is simply the sum of the two delays, 0.71 msec. Again this simple ad- 
dition is possible since bhe routers were shown to be correctly modeled as M/M/l 
queues. 



58 

8.5. Communication Layers Delay 

The X messages communicated between the X client and server experience certain 
delay as they become subject to processes within the communication layers. These 
delays are represented as Box-l and Box-5 in Figure 18. 

To measure the time spent on these layers, the client and server applications in 
emulX were started on the same host and the elapsed time between requests sent 
and replies received were logged in. 

In such arrangement a message sent from t,he X client to an X server on the same 
machine will go down the socket and network layer in the client side and up the 
socket and network layer to reach the server port. 

The average time for a packet going through the local and remote communication 
layers is thus the time spent between the client and server communicating over the 
same machine assuming that the local and remote hosts are of the same kind. This 
delay, however, does not include the time spent in the interface layer. The average 
delay for a packet of size 100 bytes to go through the socket interface layer, the 
transport layer (TCP), the network layer (IP) was measured to be 0.55 msec. The 
packet of size 100 bytes will experience the same average delay as it travels up- 
ward from the network layer through transport layer to the socket layer. 

A packet size of 100 bytes is close to the average packet size observed in our 
LAN configuration. 

Figure 19 illustrates the test set up used in measuring the communication layers 
delay in each host. 

Is it a correct assumption to characterize the communication layers within the local 
host as a pair of M/M/l queues, one for incoming packets and another for the 
outgoing ones. 

Further investigation (measurement or simulation) is required to check the validity 
of such assumption. 

8.6. Ethernet Channel Acquisition Delay 

Boxes 2. 3, and 4 in Figure 18 represent the average delays associated with the 
channel acquisition delays in CSMA/CD protocol for our LAN configuration. 

The equation for the normalized transfer time in the CSMA/CD protocol is given 
by: 



Local Host 

Socket 

TCP 

IP 

Network 
lnterfac 

Send Hessage; 
c .__. .,-__ JLdl~L LIrrlri~ 1 1 t 

Receive 
Message; 
Stop timer i t 

i t + 
t 

+ t4 + t 

Socket 

TCP 

Network 
Interface 

Figure 19: Test Setup to Measure Communication Layers Delay 

(4) 

t,,m= [(~/mz)+(4e+2)a+5aZ+4e(2e-l)a’! 
P 

2{1-p[1+(2e+l)a]} 
il+2ea-(l-e-2”p)(2~e-1-6,$2/p) a 

2[Fp(x)e-P’-‘-l+e-zP=] +2 

where: 

tf Transfer delay in seconds. 

m The average frame (packet) length (data plus overhead), in units 
of time. 

P 

A 

d 

Defined as em. 

Total average traffic, in packets/set. 

The second moment of the packet length distribution. 



60 

a The ratio of the propagation delay r to the message transmission 
length m. r/m. 

The function F?(A) is the Laplace transform of the packet length distribution f(t): 

FJA)= o-f(t)c-%it J 

Assuming the frame length is exponentially distributed, with average length m, we 
then have; 

and 

Equation (4) is credited to Bux ;BUX] which is modified slightly from the original 
derivation by Lam [LAM]. Lam used a discrete-time analysis based on slots 2r 
units of time wide, where r is the end-to-end delay along the bus. 

Average Transfer Delay in Subnet 1 

The network traffic in subnet 1 represented by Box-2 in Figure 18 was monitored 
for eight weekdays between lO:OO-11:OO A.M. The end-to-end distance for this sub- 
net was estimated at 500 meters. 

With the help of the ~Novell’s LANALYZER (a dedicated machine for network traf- 
fic monitoring) overall traffic of our subnet was recorded at one minute time inter- 
val. 

The following observation were made at the end of our test; 

Average Packet Rate [Packet/Set]: 217.5 

Average Packet Length (Bytes]: 151.7 

Given the above information and equation (4) th e average transfer delay per 
packet in subnet 1 (BOX-~) is estimated at 0.126 msec. 

Average Transfer Delay in Subnet 2 

The network traffic in subnet I represented by Box-4 in Figure 18 was monitored 
for five weekdays between lO:OO-11:00 A.M. The end-to-end distance for this subnet 
was estimated at 500 meters. 

The following observation were made at the end of our test with the help bf 
Novell’s LANALYZER; 

Average Packet Rate (Packet/See]: 186.5 



61 

Average Packet Length [Bytes]: 250.6 

Given the above information and equation (4) the average transfer delay per 
packet in subnet 2 (BOX-~) is estimated at 0.210 msec. 

Average Transfer Delay in Backbone Ethernet 

Box-3 in Figure 18 represents the backbone Ethernet for the entire site connecting 
various subnets together. 

Previous studies [Pabrai] provided us with the following observation: 

Average Packet Rate [Packet/See]: 455.28 

Average Packet Length [Bytes]: 163.2 

Given the above information and equation (4) the average transfer delay per 
packet in the backbone Ethernet (Box-~) is estimated at 0.142 msec. 



62 

9. Model Validation 

Using the emuiX application, series of measurements were done to obtain the 
average delay for an Ethernet packet of size 100 bytes which is close to the 
average packet size observed in our LAN configuration. The program simply sends 
Ethernet packets of 100 bytes at 1 minute interval awaits a response from the 
server which is told to reply with a message of the 100 bytes also. The program 
was instructed to send messages in one minute interval. Such long gap between 
each measurement was necessary in order to not violate the Poisson arrival as- 
sumption used in our iM/M/l queueing model. 

The emulX client records and displays the elapsed time (round trip delay) between 
the request sent and reply received. The average delay experienced by such packet 
going from the client to the server is then half of the round trip delay. 

Using a data set of 40 points the average delay measured for a packet going from 
the client application to the server application in our LAN configuration is es- 
timated to be 2.75 msec with standard deviation of 1.63. 

Total delay predicted from our LAN analytical model (queuing delay in the routers 
(0.71 msec), channel acquisition delays (0.48 msec) , and communication layer 
delays (1.1 msec)) is 2.28 msec. The average analytical delay estimate is about 
16% away from direct transfer delay measurement which could be the result of fol- 
lowing assumptions: 

l Exponential Distribution: In modeling of the Ethernet Channel ac- 
quisition the assumption of exponential packet length distribution was 
used. Many studies have shown that the packet length distribution in a 
LAN is more likely to be a bimodal than an exponential one. Direct 
measurement of subnet 1 and 2 confirmed such observation. The ex- 
ponential packet length distribution assumption was used in order to 
reach a close form solution in our queuing analysis. 

The fame argument applies also to the exponential packet length dis- 
tribution assumption used in modeling of our routers as M/M/l queues. 
However, as shown earlier in Figures 14 and 15 the observed packet dis- 
tribution is not that far away from the exponential distribution one. 

l Communication Layer Delay Estimate: Boxes 1 and 5 in Figure 18 
represent the communication layer delays a packet would experience 
within each host. In combining the average communication layer delay 
estimate in each host to the average estimates predicted by other queues 
in a sense we are modeling Boxes 1 or 5 as a M/M/l queue. There are 
no indications as to correctness of this assumption. Again this assump- 
tion was necessary in order to reach a simple close form solution for our 
analytical model. 

Finally due to the highly dynamic nature of our LAN configuration it is essential 
to increase the frequency and number of observations made in obtaining the routers 
and the subnets average traffic profiles as well as the average round trip delay es- 
timate used in validation of the analytical model. 



63 

10. Conclusion 

More measurements and sample points are required to obtain better estimates on 
average values used in our model analysis and validation. Random and busty ac- 
tivities are typical in a LAN environment and a large amount of measurement is 
really required to obtain a reasonable and repeatable average value. 

The flooding experiment should also be modified as described earlier for a better 
estimate on the router’s throughput. 

More experiments are needed for larger compilation of graphical primitives. 
However, given the network load and delays involved with these few graphical 
primitives, one can clearly see the advantages of distributed application paradigm 
employed in design of X protocol. The low network load and delay associated 
with the graphical primitives such as resizing a window, moving a window, copying 
from one window to another, and drawing points or lines are the result of distribu- 
tion of the graphic task between the client (X application) and the server (X dis- 

play). 

X protocol was designed to operate efficiently for a bitmapped display with 
predetined geometrical shapes such as lines, points, and rectangles of which a two 
dimensional bitmapped display is is often comprised. 

One can also see from tables 1 and 2 that drawing images could impose a hefty 
load on the network with long delays specially for the WAN model. This is par- 
tially due to their inherent large size, (a Group 3 fax is about 1 Mbytes of data 
and a digitized color photograph is easily wer 10 Mbytes) but also due to the 
lack efficient mechanism in handling the images. 

There are many possibilities for reducing network load and delay. Data Compres- 
sion can be implemented at the hardware level between the client and the server 
to reduce the data transfer. Display PostScript allows arbitrary shapes to be scaled 
rotated, and clipped. Downloading procedures to handle painter and device request 
locally and thus eliminating round trip delays for each increment of the pointer 
movement or to handle the redrawing of the objects are all solutions this problem. 

The X protocol high degree of extensibility, hardware independence, network trans- 

parency, and its good use of bit mapped display are some of the important reasons 
for its success. It has clearly tilled a void in the distributed graphical applications. 
However, as Ritchie’ cleverly points out, “Sometime, even when you till a vacuum, 
it still sucks.” 

6 Dennis Ritchie’s keynote speech at 199, Summer “SENIX conference 



64 

11. Future Direction 

More sampling of the network traffic is needed to obtain a better estimate on key 
network characteristics in our L4N configuration. Specifically the measurement on 
the average delay between client and server should be conducted for a longer 
period of time as this value is the only way of validating the analytical model. 

There is also a definite need for adopting an accurate model for prediction of 
Ethernet channel acquisition delay. 

The analytical analysis could be extended to include WAN configuration. This re- 
quires further investigation on the packet distributions in our WAN model. 

Finally it would be very interesting to extend the modelling analysis to include the 
queueing delays (Figure 6) involved in the X application and X server. 



65 

12. References 

1. [LIDINSKY] “Data Communication Needq” Lidinsky, IEEE Network 
Magazine, March 90 

2. 

3. 

[NYE] “Networking and the X Window System,” .4drian Nye 

[SCHEIFLER] The X Window System, by Robert Scheifler and Jim Get- 
tys, ACM Journal Transactions on Graphics, Vol. 5, No.2, April 1987. 

4. [MIT] “X Window System Protocol,” MIT X Consortium Standard, X 
Version 11, Release 4 

5. 

6. 

7. 

8. 

9. 

10. 

[XIlPERF! ftp anonymous uun&uu.n& UUNET Communications Ser- 
vices 

[TCPDUMP! ftp-anonymous sol.ctr.columbia.edu 

[XSCOPE] ftp-anonymous sol.ctr.columbia.edu 

[TRACEROUTE] ftp-anonymous sol.ctr.columbia.edu 

[SNMP] SNMP RFC 1098 

[ROSE] 
Rose, M.T.: The Simple Book: An Introduction to h4anagement of 
TCP/IP-based internets, Prentice Hall, Englewood Cliffs, New Jersey, 
1991. 

11. 

12. 

13. 

14. 

15. 

[SCHWARTZ] Telecommunication Networks, Mischa Schwartz, Addison 
Wesley, 1988. 

[TANENBAUM] Computer Networks, Second Edition, Andrew Tanen- 
baum, PRENTICE HALL, 1988. 

[LITTLE] Little, D.: “A Prof for the Queuing Formula: Lz*W,” Oper. 
Res., vol. 9, pp. 383-387. 

[KLEINROCK] Communication Nets, Kleinrock, L. New York: Dover, 
1964. 

[PABRAI] Chris O’Reilly and Uday Pabrai, Report on the X terminal 
Xhibition (EN00290), Computing Division, Fermi National Accelerator 
Laboratory, 1990. 

16. [METCALFE] R.M. Metcalfe and D. R. Boggs, “Ethernet: Distributed 
packet switching for local computer network,” Commun. Ass. Comput. 
Mach., voi. 19, pp. 395-404, July 1976. 



66 

17. [BUX] W. Bux, “Local-Area Subnetworks: A Performance Comparison,” 
IEEE Trans. on Comm., vol. COM-29, no. 10, Oct. 1981, 1465-1473. 

18. [LAM] S. S. Lam, “Carrier sense multiple access protocol for local net- 
works,” Computer Networks. vol. 4, pp. 21-32, Feb. 1980. YTOBAGII 
F. A. Tobagi and V. B. Hunt, “Performance analysis of carrier sense 
multiple access with collision detection,” Comput. Networks, vol. 4, pp. 
245-259, Oct./Nov. 1980. 

19. [FRANTAI L0c.4 Networks, W.R. Franta, Imrich Chlamtac, Lexington 
Books, 1981. 

20. [JACKSON! J. R. Jackson, .‘ Job Shop-like Queueing Systems,” Manage- 
ment Science, vol. 10, no. I, pp. 131-142, 1963, 

21. :SURII R. Suri, RObustness of queueing Network Formulas, Journal of 
the ACM, 30(3), 564-594. 

22. i.lAlN] Raj Jain, THE ART OF COMPUTER SYSTEMS PERFOR- 
MANCE ANALYSIS, Wiley, 1991. 

13. Bibliography 

1. “An Analysis of TCP Processing Overhead,” IEEE Communication 
Magazine, June 1989. 

2. Computer Networks, Tanenbaum 

3. “Data Communication Needs,” Lidinsky, IEEE Network Magazine, March 
90 

4. UNIX NETWORKING PROGRAMMING, STEVENS. 

5. Probability & Statistics with Reliability, Queuing, and computer Science 
Applications, Trivedi 

6. Queuing Network, W&and 

7. Telecommunication Networks, Schwartz 

8. “User-Process Communication Performance in Networks of Computers,” 
IEEE Transactions on Software Engineering, 1988. 

9. X Window System Protocol, MIT X Consortium Standard, X Version 
11, Release 4 



67 

10. X Version 11. Release 4 Source Code. MIT Project Athena. 

11. X WINDOW SYSTEM, Scheifler and Gettys 

12. X Protocol Reference Manual Vol. 0, O’Reilly 

13. Networking and the X Window System, Adrian lUye 

14. XLIB programming Manual Vol 1, O’Reilly 



This Page Intentionally Left Blank 



Appendix A 

emulX: X Client-Server Emulator 

Thie appendix provides the source code for the emulX application. 

/* The following code maasure~ the network delays associated 
l between an X client and an X eerver 
l / 

#include <stdio.h> 
#include <string.h> 
#include <stdlib.h 
#include <qe/types.h> 
#include <By./Bocket.h> 
#include <natinet/in.h> 
#include <netinet/tcp.h> 
#includa <arpr/inet.h> 
#include <natdb.h> 
#include <rpc/rpc.h> 
#include <msth.h> 
#include <netinet/in.h> 
#include <qs/prram.h> 

int readno; 
int readline ; 
int nit.sn(); 
int client_sassion (); 
int fltcompue(); 

void usrgs(); 
void Xemu-esrrer() ; 
void Xemu-server-session 0; 
void Xemu clientll: 
int Xemu_client~ekssion(); 

raid report-atrt(); /* does statistical snslysia l / 

raid t_start(); /* 
void t-stop(); /* 
raid dremon-start0 ; /* 
double t-getrtime(); /* 
cher +get.rgu 0; /* 

start timer */ 
stop timer */ 
make this L daemon */ 
return real time (elapeed) in seconds */ 
get the arguments frama command line */ 

#define MAXSAMPLE 6888 
#define MAXQUE 6 
#define UXL.IN!J 88 
#define S&BJ'EB~POBT 7BB1 
#define NUMCBLL 18 
#ifndef INADDB_NONE 
#define INADDE_NONE Brffffffff 



A-2 end..% X Client-Server Emulator 

#endif 

int replysize, reqsize, inter-ml; 
int ~ount=l; 
char *display; 
double t_arr[UXSAWLE]; 

ms.in(argc, Argo) 
int *rgc; 
char *.rgv[]; 

/w arrrr of sample network trip delay- in msecond 

char *pi 

s,stem("d.te"); 

if (a-gc==l) 
u-E=(-gr[a) i 

else if ( rrgc == 2 &k !strcmp(arg~[l], "server")) { 
/* must act as sn x server */ 
printf('\&mulrting an X server Networking Interface\n\n"); 
dremoqstart(); /* make this L daemon server*/ 
xemu-B.l...F () ; 

> 
else { /* must act as an X client */ 

if ( !(p=getugu("-d",argc,srgs)) ) 
u--g= c-v PI 1 i 

display = p; 

if ( !(p=getugu("-q",argc,argr)) ) 
u-ge(-gr C@l) i 

reqaim = atoi(p); 

if ( !(p=gstugu("-r",argc,argv)) ) 
us-g= (me7 [fll) i 

replywise = -toi( 

if ( !(p=getugu("-c",argc,argv)) ) 
uaw= (-sr LOI 1 i 

count = atoi(p); 

if ( !(p=gstugu("-i",argc,argr)) ) 
uaw= (--sr [#I 1 i 

interval = atoi(p); 

printf("\nEmulating LL~ X client Networking Interface\n\n"); 
printf("Sending requests to: Re \n",display); 
printf("requeat size: Sd [byte] \n",reqsise); 
printf("replr size: 'Ad [byte] \n',replysiee); 
printf("count: Sd \n",count); 
printf("interrs1 [aec]: kd \n\n",interval); 
Xenu_client(); 

void Xemu-client0 

int flag, length, sockfd; 
unsigned long inaddr; 



emulX: X Client-Server Emulator A-3 

struct mckaddr_in mapper_addr,serr_addr; 
struct hostent *hostptr; 
char l mem#.ge; 

if ( (sockfd = sacket(AlmINET, SOCX-STREAM, 0)) < 0){ 
fprintf(stderr,“error in creating strem socket \n”); 
exit(l) ; 

) 

barro((chrr *) kserv_addr, siaeof (err-addr)) ; 
se-r-addr.sin_family = AF-INET; 
serr_mddr. sin-port = htone (SEgVES_POET) ; 

if ( (inrddr = inet_addr(dieplay)) != INADDB-NOW ) { 
/* it is in dotted-decimal format *I 
bcopy((chu *) &inaddr, ( h c ar *) &serr_addr.sin-addr, 

simsof (inaddr)) ; 
> 

else { 

/* it is not in dotted-decimal formrt */ 
if ( (homtptr = gethostb~nme(displq)) == ‘\a’){ 

fprintf(etderr,“gethostbynrme: error far server host !4m \n”, display); 
retum; 

> 
bcop,(hostptr->h_sddr, ( h c LI *) &serveaddr.sin-addr, hoetptr->h-length); 

1 

if ( coonect(sockfd, (struct sockaddr l ) &serveaddr, eiaeof (serveadd=)) < 0) { 
fpriotf(‘tderr,“error in connecting ta server \n”); 
exit(l) i 

> 
langth==i,eof(aerv_addr); 
if (getsodmame(sockfd, (etruct sockaddr *)&serr_addr,&length) < 0 ) 

fprintf (stderr ,” error in getting socket mme \n”); 

printf(“\n\nclient listening on ephemeral port: Xd \n\n”, serv_eddr.sin_port); 

if ( raqeise > replysize ) 
length = reqsise; 

else 
length = replyaiae; 

if ( (mc~.*ge~rlloc(length+l)) == 0 ){ 
&;;:(“error in by malloc() \n”); 

1 
ma~~.gs[reqsias+replyeiae]=‘\B’; 

if (Xemu_client_seBBion(sockfd,mesaage)) 
report_stat() ; 

elme 
err(“error in client_session”) ; 

close(.ockfd) ; 
1 

int Xemu_client_session(8ockfd, mewsage) 

int sockfd; 
char .meesage; 



A-4 

int to go; 
char I%L~[YAILINE]; 

line[MAXLINS-1]='\0'; 

sprintf(lina,"Ad Xd\n",req*i~e,replysi.e); 
* = strlen(line); 

emulX: X Client-Server Emulator 

if (vrite*(*OCkfd,li*e,n) != n){ 
/- send the request *nd reply size to *erver=/ 
fprintf(stderr,"session: write* error to socket \n"); 
return(0) ; 

1 

to-go = C0u.t; 

vhile(tygo){ 

n=reqeiae; 
t_start() ; 
if (niten(sockfd,mee**ge,n) != n){ 

fprintf(stderr,"client_sesaion: write* error to socket \n"); 
return(0) ; 

1 

D= re*dn(sockfd, mess*ge, replyaiae); 
t-*top0 i 

printf('."); 
fflu.h(stdout); 

if ( (n != rsplrsiae) I I (n<0) ){ 
pri*tf("client_seesion: error in re*ding the server reply \n"); 
rrt"rn(0); 

1 

t_*rr[to~go--]=t_gstrtime()rl888.8; /e s*ve the elspeed time in msec */ 

if (intarr*l) sleep(interv*l); 

1 
return(l) ; 

> 

void Xemu-sarrer() 
(: 

int sockfd,nersockfd; 
int flag; 
int clilen; 
struct eockrddr-in *err_sddr, cli_sddr; 

if ( (sockfd = eocket(AI_INET, SOCX_STBEAY, 0)) < 0){ 
fprintf(stderr, "error in crerting stream socket \n"); 

exit(l); 
1 

brero((ch*r l ) &serv_sddr, sizeof(aerv_*ddr)); 
serTm*ddr.sin_family = Al-INJST; 
serl_*ddr.sin_*ddr.s_*ddr = htonl(INADDB-ANY); 
*err-*ddr.sin-port = htons(SEEVSX-POET); 



emulX: X Client-Server Emulator A-5 

if ( bind(sockfd, (struct sockaddr *) &serr_addr, eireof(serr_addr)) < 0 ){ 
fprintf(stdeFr,"error in binding \n"); 
exit(l); 

> 

fl*g=1; 
if ( satsockapt(sockfd, IF'PBOTO-TCP, TCP_NODELAY, (char *) &flag, 

siseof (flag)) < 0 ) 4. 
fprintf(*tderr,"error in setting stream socket \n"); 
exit(l); 

> 

if ( li*ten(*ockfd,~QU&)<0) { 
printf("ersor in listening \n"); 
exit(l); 

1 

for(;;)t 
clilen = siaeof(cli-addr); 
neraockfd = accept(sackfd, (struct socksddr *) &cli-sddr, kclilen); 

/* blocking l / 

if ( ner*ockfd > 0 ){ 
Xe~u_sarrer_session(nexsockfd); 
close(nersockfd); 

> 
else{ 

printf("*ccspt errar\n'); 
Sl==P(l)3 

1 
1 

> 

void Xemu-server-mession (sockfd) 
int *o&id; 
t 

int i, n, sise, fd; 
int upcoming, outgoing; 
char line[UXLINE]; 
char *buff, rptr; 

line[MAXLIW-1]='\0'; 
n=re~line(*ackfd,line,~INE); / e read the number of bytea coming */ 
if (*==I){ 

printf("se*sion: Unable to read number of upcoming bytes \n"); 
return; 

t 
upcoming = strtal (line, &ptr, 10); 
if ( upcoming == 0 ) 

raturng 
outgoing = strtal (ptr, kptr, 10); 

if ( upcoming > outgoing ) 
eiae = upcoming; 

else 
sise = outgoing; 

if ( (buff=malloc(eise+l)) == 0 ){ 
printf("error by malloc() \n"); 
exit(l); 

1 



A-0 emulX: X Client-Server Emulator 

if ( (n=readn(aockfd, buff, upcoming)) != upcoming /I (n == 0) ) 
return; /- EOF */ 

if ((n=rriten(sockfd,buff,outgoing)) != outgoing){ 
fprintf(stderr,"session: writen error to socket \n"); 
r*tulTl; 

) 
> 

1 

int uriten(fd, ptr, nbytes) 

register int id; 
register char rptr; 
register int nbrtes; 

int nleft, nrritten; 

nlaft = nb,tes; 
while ( nleft > 0 ) { 

nnitten = rrite(fd,ptr,nleft); 
if ( nrritten <= 0 ) 

return(nnitten); 

nlsft -= nnitten; 
ptr += -written; 

rcturn(nbytes-nleft); 
> 

int redn (id, ptr, nbytee) 

register int fd; 
register char rptr; 
register int nbytsm; 
t 

int nleft, mead; 

nleft = nbyte.3 

while ( nleft > 0 ) { 

aread = reld(fd,ptr,nleft); 
if (mead < 0 ) 

ret"rn(nread) ; /* error, return < 0 */ 
else if ( nreul == 0 ) 

break; /* &OF */ 

nleft -= mead; 
ptr += mead; 

> 

return(nb,tee - nleft); /* return >= 0 */ 
1 

int rerdline (fd, ptr, maxlen) 



en&X: X Client-Server Emulator A-7 

register int fd; 
register chu *ptr; 
register int maxlen; 
< 

int n,rc; 
char c; 

for (n=1; n<m*rlen; a++) { 
if ( (rc=read(fd,kc,l)) == 1) { 

l ptr++ = c; 
if ( c == '\n' ) 

break; 
} else if (rc == 0 ) 4. 

if ( TL == 1 ) 
ratum(0) ; /. EOF, no data re.d */ 

elm.3 
break; ,. EOF, some data was read */ 

) else 
return( /* error */ 

1 

*ptr = 0; 
return(n) ; 

> 

raid report-stat0 
i 

int i, imin, imax, j, histog[NUHCELL+l]; 
double subrange = 0, arg=0, std_di.=0i 

/* sort it */ 

for(i = I; i<=hWMCBLL; it+) 
hiatog[i]=B; 

imin = count * .l; 
imu = count * .Bi 

subrange = (t-ars[imax] - t-arr[inin]) / NOMCELL; 

/. get the average */ 

printf('\n \nSe.mple time delay points in msec\n"); 

for (i=l; i <= count; i++){ 
if ( ikl0 != 0 ) 

printf("X.lf ',t_arr[i]); 
else 

printf("%.lf\n\n",t_*rr[i]): 
if ( i >= imin kk i <= imar )< 

hiatog[(int)((t-arr[i]-t_srr[imin])/subrange) + l]++; 
*Tg += t-am [i] ; 

1 
1 

avg = srg / (imax-imincl) ; 



A-E emulX: X Client-Server Emulator 

for (i=inin; i <= imax; it+) 
std-dis += pow( (t_arr[i]-avg),(dauble)2.8); 

std_din = pow( (std-dis /(imax-imio)), (dcuble)0.6); 

printf("\n\n Number of sample p0int.B: %d\n", imn-imintl); 

printf(" Total number of cells: %d\n Cell size: %S.~f\n",NUMCELL, subrange); 

for ( i = 1; i<= NUKCELL; i++){ 
printf('\nX8.lf-%g.lf ",t_arr[imin]+(i-l)*subrsnge, 

t_rrr[irin]+(i)reubrmge); 
for (j = 1; j <= histog[i];j++) 

printf("*"); 
> 
printf("\n\n Median delay: X.3f \n ",t-*rr[(im*x-imin+l)/3]); 
printf("\n Average delay (mscc): %.3f \n Standard deviation: %.3f \n\n", "8, s 

printf(' Overall bit-rate[Kb/sec]: %.3f \n", (reqeiae*3/1024)*1000.0/*vg); 

1 

#include <stdio.h> 
#include <signrl.h> 
#include <srs/purm.h> 
#include <ermo.h> 
ertern int errno; 

#ifdef SICTSTP /* true if BSD system */ 

#include <sys/fils.h> 
#include <aTs/ioctl.h> 

#endif 

/* detach a d-anon process from lagin session context */ 

void dacnoqetart() 

( 
register int childpid, fd; 

if (getpid() == 1) 
goto out; 

/* Ignore the terminal stop signals (MD) */ 

#ifdef SIGTTOU 
eignal(SIGTTOU, SIG_IGN); 

#endif 

#ifdef SIGTTIN 
signrl(SIGTTIS, SIG_ICN); 

#endif 

#ifdef SIGTSTP 
signal(SIGTSTP, SIG_IGN); 

#endif 

#ifdef SIGSUP 



em&Y: X Client-Server Emulator A-9 

signrl(SICBUP,SIG-IGN); 
#endif 

if ( (childpid = fork()) < 0 ) 
fprintf(stderr,'can't fork first child \n"); 

ellre if ( childpid > 0 ) 
exit(l); /* parent */ 

/* first child process */ 

#ifdef SIGTSTP /* BSD */ 
if (aetpgrp(0, getpid()) == -1) 

exit(l); 
if ( (fd=open("/der/ttT",O_BD~)) >= 0 ) { 

ioctl(fd, TIOCNOTTY, (char *)NULL); /* 1 ose controling terminal l / 
clowa(fd) ; 

1 

#else /* SYSTEM V */ 

if (setpgrp() == -1) 
exit(l); 

signal(SIGUUP ,SIG_IGN); 

if ( (childpid = fork()) < 0) 
exit(l); 

else if (ehildpid > 0) 
exit(P); /* first child */ 

/* aeccnd child */ 

#andif 

out: 

for (fd=B; fd < NOFILE; fd++) 
close(fd); 

chdir("/"); 

int fltcompara(i,j) 
double ri, l j; 
t 

rsturn((int)(*i - ej)); 
> 

char .getargu(key, argc, srgr) 
char eke,; 
int argc; 
char .arp[J; 

t 

int i; 



A-10 emuM: X Client-Server Emulator 

for ( i=l; i<*rgc; i++ ){ 

if ( strcmp(krs, e.rpr[i]) == B ){ 

if ( strchr(argr[i+l], '-') == B ) 

return(arg~[i+l]) ; 

elIBe{ 
fprintf(.tderr,"errar in argument syntax \n"); 
exit(l); 

> 
1 

1 
/* found nothing */ 

return (6) ; 
1 

void uerge(name) 

printf("\n\nUsrger %a server (Network Emulate an X server) \n\n",name); 
printf("\n\nUsage: Xs options (Network Emulate an X Client) \n\n",nrme); 
printf("option.9: -d d&play-name (Xeerrer name) \n"); 
printf(" -q request-siae [brte] \n"); 
printf(" -r response-size [brte] \n"); 
printf(" --c covnt \n"); 
printf(" -i interv*l(sec) \n\n'); 
erit(0); 

1 

The following is the source code for the time function 

#include <stdia.h> 
#include <sya/tims.h> 
#include <sJa/resource.h> 

static struct timeral time-start, time-stop; /* for real time */ 
static struct ruaage ru-atart, rumatop! /a for user and sye time */ 

static double t&art, tstop, seconds; 

/* 
l start the timer. 
* We don't return aqthing to the caller, we just store nome information for the 
* stop timer routine to access. 
*/ 

Toid err(); 

void 
t-etart() 

if (gettimeofda, (&time~_start, (struct timeaone *) B ) < 0 ) 
err("t-stut: gettimeofday() error"); 

if (getrusage(BUSAGE_SELF, &ru_start) < 0) 



emulXz X Client-Server Emulator A-11 

err("tmstvt: get,rusage() error") ; 

l Stop the timer and save the appropriate informrtion. 
*/ 

void 
t-stop0 
t 

if (gstru~~(BUSAGE_SELF, &x-u-stop) < 0) 
err("t-stop: getr"s*ge() error'); 

if (gsttimeofdsy (&time-stop, (struct timesone *) 0 ) < 0 ) 
err("t_atop: gettimeofdry() error")3 

> 

l Beturn the user time in seconds. 
l / 

double 
t_getutime() 
(: 

tatvt = ((double) ru_strrt.ru_utime.tv_sec) * 10~0000.0 + 
ru_.t~rt.ru_utime.tv_uaec; 

tstop = ((dooble) ru_stop.ru_utime.tr_sec) * 188BiiBB.B + 
ru_~top.ru_utime.tv-u~ec; 

q ccondm = (tmtop - tstut) / 1000000.0; 

return(secands); 
) 

I return the system time in seconds. 
*/ 

double 
t_gststime() 
t 

tstut = ((double) ru_start.ru_stime.tv~sec) l 1888888.8 + 
ru_stsrt.ru_etime.tv_usec; 

tatop = ((double) ru_stop.ru_stime.tv_sec) t lfiEKWfW.8 + 
ru-Btop.rY-8time.tv-usec; 

seconds = (tstop - tetsrt) / Ik31WWea.@; 

return(seeonds) ; 

) 

e return the real (elapsed) time in seconds. 
*, -~ 

double 



A-12 emulX: X Client-Server Emulator 

t-getrtime() 
c 

tstm-t = ((double) time-start.tv-see) * 1888888.8 + 
time_start.tr_usec; 

tetop = ((double) time_stap.tv_sec) l 100000!3.0 + 
time_mtop.tr_usec; 

seconds = (tstop - tstart) / 1888808.8; 

return(aecands); 
> 

void 
err(s) 
char +B; 
( 

fprintf(stderr,"Xs \n",s); 
> 



Appendix B 

X Requests synopsis and Raw Data 

This appendix provides the synopsis and the raw data collected for all the X re- 
quests generated by the modified zlfperf. 

Common x Setup Calls 

The following is the listing of common setup X calls within the zllperf program. 

l XOpenDisplay: Connects the client to the server controlling the hardware 
display through TCP, or UNIX or, DECnet streams. 

Synopsis 

Dimplay l XOpemDiaplay (display-name) 

char* display-name; 

Arguments 

o display-name Specifies which server to connect to. If 
display-name is NULL then the Xlib will try to connect to the X 
server specified by the environment variable DISPLAY with the 
format of host:server.screen, where host is the Internet address or 
name of the X server, ~ervet is the sewer number on that machine 
( for single user workstation the sewer is set to 0) and optional 
screen, the screen number on that server. 

Experimental Data: 



B-2 X Requests synopsis and Raw Data 

XOpenDisplry() 

Xflient.Sun > Xeerrer.SiliconG: S SsS080000:68S0S0000(0) win 4098 <mss 
Xserrer.SiliconG > Xclient.Sun: S ~~8~008000:lasaae8000(0) sck SSS080@ 
Xelient.Sun > Xserrer.SiliconGc . ack 1 win 4088 
Xclisnt.Sun > Xserrer.SiliconC: P 1:18(12) ack 1 win 4098 
Xserrer.SiliconG > X.zlient..Sun: P 1:186(18+) rck 13 win 18584 
Xcliant.Sun > Xesrrer.SiliconGr P 13:67(U) ack 185 win 4096 
Xserver.SiliconG > Xclient.Sun: P 186:217(32) ack 57 win 16884 
Xclient.Sun > Xserrer.SiliconG: ack 217 win 4008 

. XCwatcSimpLz Window: Creates an unmapped InputOutput subwindow of 
the specified parent window. 

Synopsis 

Window XCreateSimpleWindow(displry, parent, x,+, width, height, border. 
border, border, brckground) 

Display display; 
Window parent; 
int x,y; 
unsigned iot width, height, border-width! 
unsigned long border; 
unsigned long background; 

Arguments 

o display Specifies a pointer to the Dis@lay; returned from 
XOpenDisplay. 

o parent Specifies the parent window ID. 

o z,y Specifies the x and y coordinates of the upper-left pixel of the 
new window’s border relative to the origin of the parent. 

o width, height Specify the width and height, in pixels, of the new 
window. 

o border-width Specifies the width, in pixels, of the new window’s 
border. 

o border Specifies the pixel value for t,he border. 

o 6ackground Specifies the pixel value for the background of the win- 
dow. 

Experimental Data: 



X Requests synopsis and Raw Data B-S 

XCreateSimpleWindox() 

Xclient.Sun > Xeerver.SiliconG: P 89:133(44) ack 346 win 4088 
Xearrer.SiliconG > Xclient.Sun: P 346:377(32) sck 138 win 18384 
Xclient.Sun > Xeerver.SiliconG: . ack 377 win 4088 

l XChange WindowAttributes: Changes any or all of the window attributes 
that can be changed. 

Synopsis 

XChangeWindovAttributes ( display, w, valuemask, attributes) 

Dimplay *display; 
Window w; 
unsigned long valuemask; 
XSetWindovAttributes rsttrihutes; 

Argument8 

o display Specifies a pointer to the Display; returned from 
XOpenDisplay. 

o w Specifies the window ID. 

o valuemask Specifies which window attributes are defined in the 
attributes argument. The mask is made by combining the ap- 
propriate mask symbols listed in the Structure section defined by 
XSetWindowAttributes using bitwise OR (I). 

o attributes Window attributes to be changed. The valuemask in- 
dicates which members in this structure are referenced. 

Experimental Data: 

XChsngelindowAttributem () 

Xclient.Sun > Xserver.SiliconG: P 133:181(18) ack 377 win 4088 
Xeerver.SiliconG > Xclient.Sun: P 377:409(32) ack 181 win 18.384 
Xclient.Sun > Xserver.SiliconG: . ack 408 win 4096 

. XMap Window: Maps a window, making it eligible for display. 

Synopsis 



B-4 X Requests synopsis and Raw Data 

XYapVindor(display, w) 

Display *display; 
Window v; 

Arguments 

o display Specifies a pointer to the Display; returned from 
XOpenDisplay. 

o VJ Specifies the window ID. 

Experimental Data: 

Xclient.Sun > Xserrer.SiliconG: P 181:173(12) sck 408 win 4088 
Xmner.SiliconG > Xclient.Sun: ack Ii’S win lSg84 
Xaerver.SiliconC > Xclient.Sun: P 40S:44l(gg) act 178 xin 18884 
Xclient.Sun > Xeerrer.SiliconG: . ack 441 win 4096 

l XWarpPointer: Move the pointer suddenly from one point on the screen 
to another. 

Synopsis 

XWarpPointer(display, 8z-c-v, dent-a, m-c-x, arc-~, erc_width, 
.rc-height, dest-x, deet-7) 

DieplaT *display; 
Window src-xv, dest-w; 
int m-c-x, src_y; 
unsigned int src-width, src-height; 
int dest_x, deet-y; 

Arguments 

o display Specifies a pointer to the Display; returned from 
XOpenDisplay. 

o SIC-W Specifies the ID of the source window. Could be None. 

o dest-w Specifies the ID of the destination window. Could be 1Vone. 

0 SIC-Z, arc-y Specify the x and y coordinates within the source 
window. 

1 



X Requests synopsis and Raw Data B-5 

o src-width, srcPhight Specify the width and height in pixels of the 
source area. 

o dest-z, d&-y Specify the destination x and y coordinates within 
the destination window. If dest-w is None, these coordinates are 
relative to the root window of dest-w. 

Experimental Data: 

XYarpPointsr() 

Xclisnt.Sun > Xsarrer.SiliconC: P 231:300(23) aek 388 win 4688 
Xserrer.SiliconG > Xclient.Sun: . a& 3FJ@ win 16384 
Xserrer.SiliconG > Xclient.Sun: P 369:601(33) ack 309 win 18384 
Xclient.Sun > Xserver.SiliconG: . ack 601 win 4098 

w XCreateGC: Creates a new graphics resource in the server. 

Synopsis 

CC XCresteGC(disphy, drawable, rrluemask, values) 

Display *display; 
Drrv.ble drawable; 
unmignad long rsluemask; 
XGcvalue. rvslues; 

Arguments 

o display Specifies a pointer to the Display; returned from 
XOpenDisplay. 

o drawable Specifies a drawable. The created GC can only be used to 
draw in drawable of the same depth as this drawable. 

o valuemask Specifies which members of the CC are to be set using 
information in the value structure. 

o values Specifies a pointer to an XGCValues structure which will 
provide components for the new GC. 

Experimental Data: 



B-0 

Xcliant.Sun > Xserrer.SiliconG: P 308:337(28) ack 601 win 4088 
Xaerrer.SiliconC > Xelient.Sun: P 681:833(33) ack 337 win 18384 
Xclient.Sun > Xserver.SiliconG: .sck 833 win 4898 

X Requests synopsis and Raw Data 

. XDestroySubwindows: Destroys all descendants of the specified window 
(recursively). 

Synopsis 

DiBplry *display; 
Window w; 

Arguments 

o display Specifies a pointer to the Display; returned from 
XOpenDisplay. 

o w Specifies the window ID. 

Experimental Data: 

XDestrarSubrindors() 

Xclient.Sun > Xserver.SiliconC: P 403:606(12) ack 793 win 4088 
Xscrrsr.SiliconG > Xclient.Sun: P 793:835(33) ack 686 win lS3S4 
Xclient.Sun > Xserver.SiliconC: . rrck 836 win 4008 

. XClearWindow: Clears a window, but does not cause exposure events. 

Synopsis 

XClesrWindov(di.play,w) 

Display *display; 
Window w; 



X Requests synopsis and Raw Data B-7 

Arguments 

o display Specifies a pointer to the Display; returned from 
XOpenDisplay. 

o IV Specifies the window ID. 

Experimental Data: 

XClearWindow() 

Xclient.Sun > Xeerrer.SiliconCt P 606:626(20) ack 336 win 4038 
Xscrrer.SiliconC > Xclient.Sunr lrck 635 win 18334 
X'server.SiliconC > Xclient.Sun: P 836:857(33) ack 635 win IS334 
Xclient.Sun > Xeerrer.SiliconG: . ack 357 win 4838 

l XGct WindowAttributes: returns the X WindowAttributes structure contain- 
ing the current window attributes. 

Synopsis 

Staturn XGetWindovAttributes (display, w, window--ttributes) 

Dimplay *dimplay; 
Window v; 
XWindovAttributes *window-attributes; /* BETUSN */ 

Arguments 

o display Specifies a pointer to the Display; returned from 
XOpenDisplay. 

o w Specifies the window ID. 

o window attributes Returns a filled XWindowAttributes structure, 
con&&g the current attributes for the specified window. 

Experimental Data: 



B-8 X Requests synopsis and Raw Data 

XGetWindowAttributea () 

Xclient.Sun > Xserrer.SiliconC: P 626:638(8) ack 857 win 4096 
Xserver.SiliconC > Xclient.Sun: P 331:901(44) ack 333 win 18334 
Xclient.Sun > Xserver.SiliconC: P 633:641(8) sck 9Bl win 499s 
Xserrer.SiliconC > Xclient.Sun: P 901:933(32) ack 641 win 18334 
Xclient.Sun > Xserrer.SiliconG: P 641:646(4) rck 933 win 4096 
Xserrer.SiliconG > Xclient.Sun: P 933~9133(33) ack 646 win 113334 
Xclient.Suo > Xserver.SiliconG: . ack 983 win 4896 

l XFreeGC: Frees all memory associated with a graphics context, and 
removes the GC from the server and display hardware. 

Synopsis 

XPreeGC(diaplay, gc) 

Display *display; 
cc gc; 

Arguments 

o display Specifies a pointer to the Display; returned from 
XOpenDisplay. 

o gc Specifies the graphics context to be freed. 

Experimental Data: 

XPreeGC () 

Xclient.Sun > Xeerver.SilicaoG: P 646:667(12) ack 9133 win 4096 
Xserrer.SiliconC > Xclient.Sun: P 963r997(33) ack 637 win lS3S4 
Xclient.Sun > Xserver.SiliconG: . ack 991 win 4898 

l XDestroy Window: The window and all inferiors (recursively) are 
destroyed, and a DestroyNotify event is generated for each window. 

Synopsis 

XDestroJWindor(display, w) 

Display *display; 
Window v; 



X Requests synopsis and Raw Data 

Arguments 

3 display Specifies a pointer to the Display; returned from 
XOpenDisplay. 

o w Specifies the window ID to be destroyed. 

Experimental Data: 

XDeotrayWindox() 

Xclisnt.Sun > Xaarrer.SiliconCr P 660:681(12) lrck l%W win 48GS 
Xsarrsr.SiliconC > Xclient.Sun: . ack 581 win 18884 
Xserrer.SiliconG > Xclient.Sun: P 10ZG:l0Sl(32) ack 581 win 18884 
Xclient.Sun > Xeerrer.SilicanCr . ack l#Sl win 4898 

l closing a network connection. 

Experimental Data: 

B-9 

Xclient.Sun > Xserrer.SiliconC: F 6D7:697(0) ack l!dGa win 4896 
Xserrsr.SiliconC > Xclient.Sun: . ack 598 win lSaS4 
Xssrrer.SiliconC > Xclient.Sun: F leGarl&TG8(0) ack 588 win 18884 
Xclient.Sun > Xsener.SiliconC: . rck lBG4 win 4SOB 

Graphical Primitives X Calls 

The following is the listing of all the graphical primitives’ X calls involved in the 
zllperj program: 

l XDrawPoints: draws one or more points into the specified drawable. 

Synopsis 

. 
. 

,. 

XDrarPoints(displsy, drawable, SE, points, npoints, mode) 

Display *display; 
Drawable drawable; 
GO *c; 
Xpoints mpointe; 
int npoints; 
int mode; 

Arguments 



B-10 X Requests synopsis and Raw Data 

I display Specifies a connection to an X server; returned from 
XOpenDisplay. 

3 drawable Specifies the drawable (e.g., window). 

o ge Speciks the graphics context. 

0 points specifies a pointer to an array of XPoint structures contain- 
ing the positions of the points. 

o npoints Specifies the number of points to be drawn (npoionts= 
1000). 

o mode Specifies the coordinate mode. 

Experimental Data: 

Xclient.Sun > Xeerver.SiliconCr . 281:1741(1488) sck 681 win 4808 
Xclient.Sun > Xserrer.Silicor&: . 174l:a201(14S0) ack 681 win 4888 
Xclient.Sun > Xeerrer.Silico&: P 3201:4~Oa(1082) ack 581 win 4086 
Xclient.Sun > Xesrrer.Silico&r P 4193:4297(4) rck 581 win 4006 
Xeerrer.SiliccnG > Xcliant.Sunr . rek 4207 win l6aS4 
Xmsrrer.SiliconG ) Xclient.Sun: P 681:818(33) ack 4287 win 18884 
Xclient.Sun > Xssrrer.SiliconC: . tick 818 win 4008 

l XDmwLines: Draws a series of lines joined end-to-end. 

Synopsis 

XDrawLines(display, drawable, SC, points, npoints, mode) 

Display *display; 
Drrrable draurble; 
GC gc; 
Xpoints *points; 
int npointe; 
int mode; 

Arguments 

o display Specifies a connection to an X server; returned from 
XOpenDisplay. 

o drawable Specifies the drawable (e.g., window). 

o gc Specifies the graphics context. 



X Requests synopsis and Raw Data B-11 

0 points specifies a pointer to an array of XPoint structures contain- 
ing the positions of the points. 

o npointa Specifies the number of points in the array, (npoionts= 
1000). 

o mode Specifks the coordinate mode. 

Experimental Data: 

XDr*rLines() 

Xclient.Sun > Xserrer.SiliconG: a81:1741(1480) sck Se1 win 48W. 
Xclient.Sun > Xeerver.SiliconG: 1741:3a01(1468) sck 681 win 4888 
Xclient.Sun > Xeerrer.SiliconC: P 3a0lr4aG7(10GS) ack 581 rain 4898 
Xclient.Sun > Xearrer.SiliconG: P 4aG784%31(4) ack 581 win 4BGS 
XserTer.SiliconG > Xclient.Sun: . ack 4381 win 18384 
Xserrer.SiliconG > Xclieot.Sun: P 681:818(32) ack 4381 win IS%34 
Xclient.Sun > Xeerver.SiliconGx . ack 613 win 4896 

l XLoadQueryFont: loads a font and fill information structure. 

Synopsis 

XPontStruct *XLordQueryFont (dipl-y, name) 

Display rdisplry; 
char *nma; 

Arguments 

o display Specifks a connection to an X server; returned from 
XOpenDisplay. 

o name Specifies the name of the font, (name = nf3x13”). 

Experimental Data: 

XLo.sdQueryFont() 

Xcliemt.Sun > Xeerrer.SiliconG: P aSl:ass(ar) ack 473 win 4888 
Xserrer.SiliconG > Xclient.Sun: 478:1883(1460) sck 285 win 18384 
Xeerrer.SiliconG > Xclient.Sunr P lGZmraa37(304) sck a85 win 18384 
Xclient.Sun > Xserver.SiliconG: ack 2237 win 4888 
Xclient.Sun > Xeerrer.SiliconG: P a86:a89(4) a& aaa7 win 48953 
Xserrsr.SiliconG > Xclient.Sun: P aaaT:aaSo(aa) sck 288 win 16384 
Xclient.Sun > Xserrer.SiliconG: . sck 2288 win 4888 



B-12 X Requests synopsis and Raw Data 

l XChangeCC: Changes the components of a given graphics context. 

Synopsis 

XChangeGC(diaplay, gc, valuemask, values) 

Display *display; 
CC gc; 
unsigned long vsluemaak; 
XGCVrlues l ralua.; 

Arguments 

o display Specifies a connection to an X server; returned from 
XOpenDisplay. 

o ge Specifies the graphics context. 

o valuemask Specifies the component in the graphics context to be 
changed, ( valuemask = GCFont ). 

o values Specifies a pointer to the XGCVlaues structure. 

Experimental Data: 

XChmgsGC() 
Xclient.Sun > Xserver.SiliconG: P &WraaG(aa) ack 2381 win 4888 
Xserrer.SiliconG > Xclient.Sun: . ack a2G win 18384 
Xserrsr.SiliconG > Xclient.Sun: P zSOl:aa33(aa) sck 328 win 18884 
Xclient.Sun > Xeerrer.SiliconG: . aek aaaa win 48~ 

l XDrawString: Draw an &bit text string, foreground only. 

Synopsis 

XDrawString(display, drawable, SC, I, J, string, length) 

Display *display; 
Drarrble drarablej 
GC gc; 
int x, y; 
Char *string; 
int length; 



X Requests synopsis and Raw Data B-13 

Arguments 

o display Specifies a connection to an X server; returned from 
XOpenDisplay. 

o drawable Specifies the drawable. 

o gc Specifies the graphics context. 

o z, y Specify the x and y coordinates of the baseline starting posi- 
tion for the character, relative to the origin of the specified draw- 
able. 

o string Specifies the character string. 

o length SPecifies the number of characters in string. 

Experimental Data: 

H)rswString() 

Xclient.Sun > Xsensr.SiliconC: P a4~7r46a(l04) sck 2441 win 48W3 
Xsrrrcr.SiliconC > Xclient.Sun: P 2441:247a(aa) sck 463 win ID.384 
Xcliant.Sun > Xaarver.SilicanC: . ack 2478 win 4880 

. XFreeFont: Unloads a font and free storage for the font structure. 

Synopsis 

XFreeBont(diaplr~, font-struct) 

Display *display, 
XFontstruct *font-struct; 

Arguments 

o display Specifies a connection to an X server; returned from 
XOpenDispiay. 

o font-struct Specifies the storage associated with the font. 

Experimental Data: 



B-14 X Requests synopsis and Raw Data 

XFreeFont () 

Xclient.Sun > Xserrer.SiliconCr P 473:486(12) ack 2606 win 4888 
.Xeerrer.SiliconC > Xclient.Sunr ack 485 win 18372 
Xserrcr.SiliconC > Xclient.Sun: P 2506:!2687(cT2) ack 486 win 16384 
Xclicnt.Sun > Xesrrer.SilicanG: ack 2687 win 4886 

. XCopyArea: Combines (copies) the specified rectangle of src with the 
specified rectangle of dest. Both SIC and dcst must have the same root 
and depth. 

Synopsis 

XCopyArea(dieplaT, m-c, dst, SC, arc-r, BPC-7, width, height, 
dent-x, dent-y); 

Display *display; 
Drwable erc, dent; 
DC gc; 
int src-x, 8rc J; 
unsigned int width, height; 
int dsst-x, dent-yi 

Arguments 

o display Specifks a connection to an X server; returned from 
XOpenDisplay. 

o SW, dest Specify the source and destination rectangles to be com- 
bined. 

o gc Specifies the graphics context. 

o u-z, src-y Specify the x and y coordinates of the upper-left COT- 
net of the source rectangle. 

o width, height specify the dimension in pixels of both the source and 
destination rectangles, (width=height=lOO pixels]). 

o da--z, de&-y Specify the x and y coordinates within the destina- 
tion window. 

Experimental Data: 



X Requests synopsis and Raw Data B-15 

XCap~Area () 

Xclient.Sun > Xserrer.SiliconGz P 697:72o(a2) ack 818 win 4098 
Xssrvsr.SiliconG > Xcliant.Sun: P 613:646(32) rck 728 win 16384 
Xclient.Sun > Xssrver.SiliconG: . sck 646 win 4888 

l XPutlmage : Draws a section of an rectangle in a window or pixmap. 

Synopsis 

XPutImage(dieplay, drrwable, gc, image, src-I, erc_y, dst_x, 
det_y, width, height) 

Display *display! 
Drawable drawable; 
CC gc; 
Hmrgs *imrgs; 
int src_x, src_y; 
int dst_x, dst 7; 
unsigned int width, height; 

Arguments 

o display Specifies a connection to an X server; returned from 
XOpenDisplay. 

o drawable Specifies the drawable. 

o ge Specifies the graphics context. 

0 image Specifies the image to be combined with the rectangle. 

0 SIC-2, src-y Specify the x and y coordinates of the upper-left 
corner of the rectangle to be copied. 

o dst-r, dst-y Specify the x and y coordinates relative to the origin 
of the drawable, where the upper-left corner of the copied rectangle 
will be place. 

o width, height specify the width and height in pixels of the rectangle 
area to be copied. (width=height=lOO pixels]). 

Experimental Data: 



B-16 X Requests synopsis and Raw Data 

xP"tImage() 

Xclient.Sun > Xeerrer.SiliconG: . 1078G:la220(146t3) ack 388741 win 4SG 
Xclient.Sun > Xserrer.SiliconG: . 12Z?~:la~80(1460) sck 800741 win 400 
Xclicnt.Sun > Xserver.SiliconC: P 13888:14866(1176) lrck %I0741 win 400 
Xserler.SiliconG > Xclient.Sun: . ack 14806 win 18884 
Xelicnt.Sun > Xservsr.SiliconG: . 14886:168Z6(1468) sck 380741 win 400 
Xclient.Sun > Xserrsr.SiliconG: . 16a~6:17786(1468) eck ?.a0741 win 400 
Xclient.Sun > Xserrer.SiliccnG: P 17786:18981(1178) ack a60741 win 409 
XaerTer.SilicanG > Xcliant.Sun: . rck 18901 win Isa04 
Xclicnt.Suo > Xserrer.SiliconG: 10e61:a04a1(1400) ack a00741 win 400 
Xclient.Sun > Xaerrsr.SiliconG! P a04alsa07Sa(%72) ack 360741 win 4008 
Xclisnt.Sun > Xserrer.SiliconG: P 207Qaz20TW(4) ack 860741 win 4080 
Xssrver.SiliconG > Xclient.Sun: P S00741:800778(82) rck 20797 win 1638 
Xclicnt.Sun > Xserrer.SiliconG: . s.ck 860773 win 4096 

. XGetlmage: Dumps the contents of the specified rectangle, a drawable, 
into a client-side Xhage structure, in the format specified. 

Synopsis 

XXmage +XGetImage(display, drawable, 'I, J, width, height, 
planqmrsit, format) 

Dimple7 *displq; 
Drawable dr.r.ble; 
int I, J; 
unsigned int width, height; 
unsigned lcng plane-msek; 
int format; 

Arguments 

o display Specifies a connection to an X server; returned from 
XOpenDisplay. 

o drawable Specifies the drawable. 

o z, y Specify the x and y coordinates of the upper-left corner of the 
rectangle. 

o width, height specify the width and height in pixels of the image, 
(width=height=lOO pixels]). 

o plane-mask Specifies a plane mask that indicates which planes are 
represented in the image, ( plane-mask = -0 ). 

o format Specifies the format for the image, ( format=ZPixmap ). 



X Requests synopsis and Raw Data B-17 

Experimental Data: 

XGetImage() 

Xcliant.Sun > Xserver.SiliconG: P 731:7*1(10) sck %S0877 win 4008 
Xmrrsr.SiliconG > Xclient.Sun: as0s77r302la7(14S0) rck 741 win 1SaE 
Xmrrer.SiliconG > Xclient.Sun: . 3~2137:36~6!37(14i30) ack 741 win 1638 
Xcliant.Sun > Xssrrsr.SiliconG: . ack 363607 win 4098 
Xaerrsr.SiliconG > Xclient.Sun: . 368697r~86067(1480) sck 741 win 1888 
Xscrrsr.SiliconG > Xclient.Sunz . asses7~ass517(14ss) sck 741 win ISa8 
Xclient.Sun > Xsarrsr.SiliconGz . ack 80S517 win 4000 
Xmmrrer.SiliconG > Xc1ient.S-m: . 'dEe&17:367977(1480) ack 741 win 1638 
Lerrar.SiliconG > Xclient.Sun: . 3S7077:3604S7(14S0) wk 741 win 1SSE 
Xclient.Sun > Xeervar.SilicanGz . ack aSB4a7 win 4090 
Lerrsr.SiliconG > Xclient.Sun: P WJ4a7:a70700(1272) sck 741 win lSa8 
Xdisnt.Sun > Xeervar.SiliconG: P 741:745(4) sck 870709 win 4008 
Xnsrrer.SiliconG > Xclient.Sun: P 370700:~70741(~2) rck 745 win 113384 
Xclient.Sun > Xserver.SiliconG: ack 370741 win 4090 

. 

XReaize Window : Changes the inside dimension of the window. The 

Synopsis 

Xbsisalindow (display, w, width, height) 

Display *display; 
Window v; 
Unsigned int width, height; 

Arguments 

o display Specifies a connection to an x server; returned from 
XOpenDisplay. 

o w Specifies the ID of the window to be resized. 

o width, height Specify the new dimension of the window in pixels. 

Experimental Data: 

XEesireWindow() 

Xclient.Sun > Xserrer.SiliconG: P 469:493(24) ack 741 win 4088 
Lerrsr.SiliconG > Xclient.Sun: P 741:773(81) ack 48a win 18384 
Xclient.Sun > Xsarrer.SiliconG: . ack 773 win 40538 



B-18 X Requests synopsis and Raw Data 

l XMove Windour: Changes the position of the origin of the specified win- 
dow relative to its parent. 

Synopsis 

, 

XMoveWindox (display, H, x, y ) 

Dimplay *display; 
Window w; 
int x,y; 

Arguments 

o display Specifies a connection to an X server; returned from 
XOpenDisplay. 

o zu Specitks the ID of the window to he moved. 

o z, y Specify the new x, and y coordinates of the upper-left pixel of 
the window’s border, relative to its parent. 

Experimental Data: 

XMovslindor() 

Xclisnt.Sun > Xaerver.SiliconG: P 541:565(24) ack 837 win 4888 
Xmrrvcr.SiliconG > Xclient.Sun: P SS7:SS9(32) ack 586 win 1S384 
Xclisnt.Sun > Xserrer.SiliconG: ack SSG win 4898 



Appendix C 

X Requests Listings and Descriptions 

This appendix provides a summary of X requests grouped by functionality. 

Each X request is followed by a brief description, it opcode, number of data bytes 
used, number of padding bytes used for alignment requirements, total length of the 
request including the header, and its corresponding reply length. 

Colors and Colormaps 

Description: Allocate a readenly colorcell specifying the 
color with RGB values. 

opcodc:O4 
dataal 
paddins 
rata, hgth:16 
reply h@h32 

AllocCoLrCella: 

Description: Allocate read/write eoloreella. This request 
does not set the coiom of the allocsted cells. 

opcode:86 
data:8 
paddin@ 
tot., Icn*th:12 
reply Icngth: 32+4n+4m 

n: number of pixels valuea 
m: numer of ma&s values 

AllocColorPlanes: 

Deacdptim: Allocate read/write colorcella for overlaya. 
This request does not set the colors of the allocated cells, 

opcode:W 
data:l* 
padding:0 
tota, length:16 
reply length:32+4n 

n: number of pixels “ah.. 

AllocNamedColor: 



C-2 X Requests Listings and Descriptions 

Description: Allocate a readenly colorcell specifying 
the color with a color name. 

opcode:85 
dat?A+n 

n: lenfih of atring 
padding:p 
tore., length:1l+o+p 
ceply kogths 

CopyColormapAndFrce: 

Description: Copy into a new colormap the colorcells that one 
client haa ablated. and free these eolorceUe in the old 
eohmap. 

opcode:80 
data:8 
padding:0 
tota, Icngth:12 
reply length:0 

CreateCalormap: 

Description: Create a virtual eolormap. 

opcode:78 
data:12 
padding:0 
total length:16 
reply length:0 

Description: Free a virtual colormap. 

opcode:79 
date.:. 
padding:0 
rata, length:8 
reply lengdla 

FreeColora: 

Deaeription: Deallocate colorcella. 

opeode:88 
datX8+40 

n: number of pixel valuea 
padding:0 
tot., length:12+4o 
reply length:0 

Deseriptionr Copy a virtual colormap into the display 
hardware, sothat it will actually be used to tramlate 
pixel values. 

opcode:Lll 
data:4 
padding:ll 
tots, length:8 
reply length:0 

ListInstalledColormaps: 



X Requests Listings and Descriptions c-3 

Description: List the IDS of the colormaps installed in the 
hardware. 

opccde:L?3 
d&S* 
padding0 
total length:8 
reply leogth:32+4n 

0: number of COLORMAPs 

f.ookupColo.: 

Daeriptian: Return the RGB values smxiated with a color 
name, and return the cloaeat RGB values available an the 
diaphy hardware. 

apcodc:9f 
dataS+n 

o: length ol otring 
paddin~:p 
tota, IcoJlh:l*+n+p 
reply length32 

Dncription: Return the colors io the specified cells of a 
colormap. 

opcodc:91 
d.tarl+lo 

n: number of pixel “dues 
pddin~o 
total letl&x9+4n 
rep,, Ica&c3Z+8n 

n: number of RGBa in colora 

Dncriptioo: Stwe colors into cella allocated by 
AllocColorCells or AllocColarPlanes. 

OpCOd~:89 
&%ts;*+nn 

0: number of COLORlTEMI 
padding.0 
totAl length:8+12n 
reply length: 

Description: Store colon into eclla allocated by 
AllocColorCella or A,,ocCo,orP,anea. 

opcodc:Qo 
dataa+n 

r.: .ering length 
padding:p 
total leil*th:16+n+p 
reply length:0 

UniostdIColormap: 

Dncription: Remove a virtual colormap from the display 
hardware, 80 it will mot be used to tramlate pixel value.. 



c-4 

data:4 
padding:0 
tata, lengdl:8 
reply length:0 

X Requests Listings and Descriptions 

createcursor: 

Deacriptioo: Create a cursor resource from ~haraeterr in a 
apecid CUrsOl foot. 

opcc”k93 
d.tX28 
padding:0 
total k,gth:3* 
reply length:0 

CresteClypilCumr: 

Dcaeription: Create a cursor Irom characters in soy fmt, 

opcode:94 
data:28 
padding:0 
total lenglix32 
reply leogtixcl 

Description: Destroy a cursor resource 

opcode:95 
data:4 
paddiog:0 
tota, h&e. 
repiy hgttx0 

Description: Chmge the foreground and background colors of a 
CUrsOr. 

opcode:r% 
data:16 
padding:0 
tota, length:20 
reply hgth:rl 

Drawing Graphics 

ClearArea: 

Description: Cle.r a" area of a window. 

0pcode:e.l 
data:12 
psdding:O 
tots, length:16 
reply length:0 



X Requests Listings and Descriptions c-5 

Deacriptim: copy a" area of a window to another area in the 
same or a different window. 11 the source area is obse"rcd. 
thi rquest will generate a GraphicsExpoae event $0 identify 
the area of the deatinstioo for which the vmrcc is not 
srailabic. 

Dncriptkm: Copy a single plane of one drawable into any 
number of planes of another. applying two pixel values to 
tmnht~ the depth of the single plane. 

opcwkm 
data:28 
padding:0 
total length3 
reply length:0 

Dncription: Fill a polygon. without drawing the complete 
outline. 

opcoded’) 
d*lSl*+rlll 

a: number of painta 
paddii~:o 
total lcn(Ilh:16+4n 
reply len@h:o 

Deerriptiom: Draw one or more arcs, each of which is a 
partial ellipse digned with the x and y axis. 

opc0de:e.s 
data:8+12o 

n: number of ARCa 
padding:0 
tota, length:11+1*” 
reply length:0 

PolyFillArc: 

Description: Fill one or more arcs, without drawing the arc 
itself. 

opcode:71 
data:8+1Zo 

0: number of ARCS 
padding0 
tots, Icngfh:1Z+l*n 
reply k.@h:O 

Description: Fill one or mom rectanglea. without drawing the 
entire outlioe. 



C-6 X Requests Listings and Descriptions 

datC8fLl” 
0: number of RECTANGLEs 

padding:0 
tota, length:12+[lo 
reply len@h:o 

Dercriptioo: Draw one or more mnoected lines. 

opcode:es 
dCdC.:*+lll 

n: number of POINTa 
pddditlg:0 
total klgth:12+*o 
reply ler@h:0 

PolgPoint: 

Dercription: Draw one or more points 

opcode:c% 
datCS+4n 

n: number of points 
paddinw3 
tats, length:12+4n 
reply len&a 

Description: Draw one or more reclaoglea. 

CWOdW37 
datS8+8n 

n: number of RECTANGL.Eh 
padding:0 
tota, length:12+8n 
reply length:0 

Fwgsegment: 

Description: Draw one or more disconnected linea. 

opcode:66 
data:8+8n 

n: number of SEGMENTa 
padding:0 
tota, length:12+Bn 
reply length:0 

Events 

GetlnputFocus: 

Dcacription: Return the current keyboard focus window 

opcode:13 
data:0 
psdding:O 
tocal length:4 
reply length32 

GetMotionErenra: 



X Requests Listings and Descriptions c-7 

Deacriptioa: Some servers are equipped with a buffer 
that records the position history of the pointer. This 
request will return segmenta al this history br selected 
time periods. 

OpCCWk.39 
IIdS 
paddingz0 
total length:16 
reply lerl&x32+8” 

n: number of TIMECOORD 

Dc,cription: Set a window and its deacendanta to rccieve all 
keybosld input. 

C.pcOdC13 
dats:0 
padding:0 
tot., length:4 
reply length:32 

Fonta ad Text 

CloseFont: 

Description: Disclaim intereat in a particular font. II 
thin ia the last diem to be using the apedied font. 
the font ia unloaded. 

OpCdd6 
datd 
p&dding:0 
tot* len@h:B 
reply ,engh:o 

Deacriplion: Get the path that the server uses to search far 
for&. 

apcode:52 
datZ3:0 
pddingxl 
tata, length:4 
reply leogth:32+n+p 

n: number of STR 
p: padding 

Description: Draw text string in &bit font. The bounding 
rectangle ol the string is drawn in the background color 
lrom the GC before tile text is drawn. 

OpXiC76 
&lta:n+n 

tx: length of string 
paddiog:p 
tot.1 length:16+n+p 
reply ler&l:O 

ImageText16: 

Descriptiao: Draw text string in l&bit font. The bounding 



C-8 X Requests Listings and Descriptions 

rectangle of the string ia drawn in the background color from 
the GC before the te*t is drawn. 

OpCOdC77 
dah:12+*n 

n: number of Z-byte charactera 
psddin*:p 
tot*, length:l6+2n+p 
reply lengtk0 

Dcacriptiom: Lid the fonts available on a server. 

opcde:4!3 
dak4tn 

0: lemJth of pattern 
paddiogzp 
total length:8+n+p 
reply length:32+n+p 

n: number of names 

ListFontsWithlnlo: 

Description: List the fonts available on a server. with 
informatioo about each font. 

opcodc:ml 
dd&lfIl 

n: length of pattern 
paddiog:p 
tota, length:S+o+p 
reply ler,gth:32+28+4m+n+p 

m: oumber of FONTPROPS in propertie* 
n: length of nllme in bytea 

Description: Load a font for drawing. If the font haa already 
been loaded. this request simply returns the ID. 

opcodc:45 
data:lJ+n 
paddiog:p 
tata, ,ength:1*+n+p 
reply length:0 

Deacriptim: Draw text item wing 8-M lonts. Each item can 
specify a atrinp. D lent, and a horimntal offset. 

opcode:74 
Cl*ta:12+m 
padding:p 
tota, length:16+n+p 
reply length:0 

PdflkdlB: 

Descriplioo: Draw text items using l&bit lone.. Each item can 
specify a string, a font, and a horimntal offset. 

OpCOdC7.5 
dlLtS12+” 
psddiog:p 



X Requests Listings and Descriptions 

total leo@h:16+“+p 
reply length:0 

Description: Get the table of information describing a font 
and each character in it. 

OpXk47 
datsl 
padding:0 
total leagtb3 
reply kngh:32+28fBn+lZm 

n: numbber of FDNTPROPa in properties 
m: number of CHARINFOs 

Description: Calculate the width of a string in a current font. 

opcode:48 
datUl+*” 

0: length of string 
p*ddiing:p 
Lotal length:B+Zn+p 
reply length:32 

Description: Set the path that the sewer usea to search for 
Foote. 

opcode:51 
dataA+n 

II: path length 
pdding:p 
total lenpth:e.+n+,l 
reply lellgth:Ll 

The Graphics Context 

Description: Chaoge any or all charscteriatics of an exhting GC. 

opeodc56 
data:8+4” 

n: number of “ahe, 
padding:0 
tot.1 len@b:,*+l” 
reply ,cn.th:o 

Description: Copy any or aI1 characteristics of one GC into 
another. 

opcade57 
hk12 
padding:0 
tot., length:16 
reply length:0 

C-Q 



c-10 X Requests Listings and Descriptions 

Deacriptiao: Create a graphics context, and DptioOaily set 
any oc a” of ita characteristics. LI not eet, each 
characteristic ha3 a reasonable default. 

opcode55 
data:lZ+*” 

0: number ol values 
padding0 
total length:l6i*n 
repb kc&l:0 

Delcriptioo: Free the memory in the server associated with a GC. 

opcode:60 
data:, 
padding:0 
total lenaths 
reply k”@th:ci 

SetClipRectanglea: 

Description: Set the clip regioo of a GC to the unioo of a set 
of reclsngiea. 

.htU3+*n 
II: number of RECTANGLEa 

paddii((:o 
total length:ll+On 
reply length:0 

Deacriptioo: set the dadl pattern for lima, in a more 
powerful way than ir possible using CreateCC or ChangeCC. 

opcodc:58 
ddX8f” 

n:length of dasher 
padding:p 
tota, len&l:12+n+p 
replg length:0 

Images 

Getlmsge: 

Description: Place an image from a drawable into a 
reprerentation in memory. 

OpCOdd3 
data:16 
padding:0 
tot.1 length?20 
reply length:32+n+p 

0: number of bytes 

Deacriptioo: Dump an image into a drawable 



X Requests Listings and Descriptions c-11 

d.dC20+n 
n: number of bytes 

padding:p 
total length:24+“+p 
reply lengax0 

Interclient Communication 

ChangeProperty: 

Lhcription: set the valve of a property. 

OpCOd~:lfJ 
datX20+n 

0: number of bytes 
paddin~:p 
tots, Icagth:24+o+p 
reply h&:0 

ConvertSelection: 

Description: Request that the owner of a particular selection 
convert it to a particular format, then send a* event 
ioforming the requeacor of the conreraion’a IUCC~LII and the 
name ol the property containing the result. 

opcodc:21 
data:20 
padding:0 
total Length:24 
reply len(lth:0 

DeleteProperty: 

Description: Delete the data aaaociated with a particular 
property on a particular window. 

opcode:19 
data:8 
padding:0 
rots, hgth:12 
reply length:0 

Description: Get the string name of a property given its ID. 

GetProperty: 

Description: Get the vdue of a property. 

opcode:ZO 
data:20 
padding:0 
total lcn*th:24 
reply length:32+n+p 

n: number a( bvtes 



c-12 X Requests Listings and Descriptions 

GetSelection0woer: 

Description: Get the current owner of a partieuh aelection 
property. 

opcode:23 
datL:l 
p.ddiog:lJ 
total Isngth:B 
reply length:32 

IntcrrIAtom: 

Description: Get the ID of a property given its string name, and 
optionally create the ID if no property with the specified name 
exista. 

opcode:t6 
dataA+” 

n: length cd name 
padding:p 
tots, k,gtkc:L3+n+p 
reply length:%? 

ListHosts: 

Deacriptiom Obtain a list of hosta having a.cces11 to a display. 

opccxie:lto 
data:0 
pddhg:O 
total length:* 
reply knsth:32+o 

n: oumber of bata 

Description: List the IDS of the current list of propertier 

opeode: 21 
data:, 
pdddiog:O 
total Icogth:* 
reply ler&h:32+4n 

n: number of ATOMa 

RotatePropertiea: 

Deacriptioo: Rotate the dues of a list of properties 

OpCOdC114 
data:S+‘tn 

n: number of ATOMS 
padding:0 
tota, length:,2+4n 
reply length:0 

SetSelectionOwncr: 

Descriptioo: Set a window as the current owner s,f a particu,ar 
selection property. 

opeode:22 
data:12 
padding:0 
tota, Icngth:16 



X Requests Listings and Descriptions c-13 

reply length:0 

Keyboard and Pointer 

AUowEventa: 

Deacriptian: Release events queued in the sewer due to grabs with 
certain parameters. 

opcode:35 
d&W, 
padding:0 
total lengths 
reply length:0 

Description: Ring the keyboard bell 
opcode:l01 
data:0 
padding:0 
tota, length:4 
reply length:0 

ChangeActivePointerGrab: 

Description: Charge the events that are sent to a window 
that has gmbbed the pointer oc keyboard. 

apcade:30 
dateGIl 
padding:0 
lots, *e.gth:bs 
reply length:0 

Description: Change personal preference features of the 
keyboard such as click and .suto-repeat. 

opc.de:m* 
d.SkAfl” 

0: number Of VALUE8 
padding:0 
tota, length:8+*n 
reply length:0 

ChangeKeyboardhlapping: 

Description: Change the keyboard mapping seen by all 
clieots. 

opcodc:ml 
data:4+4nm 

n: keycode-count 
m: key.yma-per-keycode 

padding:0 
tota, length:.9+nm 
reply length:0 

ChaogePointerColltroI: 

Description: Change personal preference Ieaturee of the 
pointer. aueh as acceleration (the ratio of the amount 
the physical mowe is moved to the amount the curex moves 



c-14 X Requests Listings and Descriptions 

on the screen)~ 

opeode:105 
data:8 
paddirwl 
total length:12 
reply length:0 

GetKeybaardContrcl: 

Description: Get personal preierence features al the keyboard 
such a8 click and auto-repeat. 

opcodc:Kn 
data:0 
padding:0 
total Icngth:4 
reply lcn&l:32+20 

GctKeyboardMapping: 

Description: Return the keyboard mapping seen by all clienta. 

opcode:m 
data:* 
padding:0 
tote., length:8 
reply leogth:32+4nm 

nm: number of KEYSYMa 

GetModificrMapping: 

Demription: Get the mapping of physical keya to logical 
modifiera. 

opcade:llO 
data:0 
padding:0 
total length:4 
reply length:32+8n 

n: number of keycodea 

Description: Return personal preference featurea of the pointer. 

opcode:106 
data:0 
psddin~:il 
tota, Icngttc4 
reply length32 

Description: Get the mapping of physical buttons to logical 
buttons. 

opcode:ll, 
data:0 
padding:0 
tot.1 length:4 
reply length:32+n+p 

n: number of MAP* 



X Requests Listings and Descriptions c-15 

Description: For all pointer events (button preasea and 
motion) occurring while the apecified combination of buttons 
and modifier keys are pressed, declare that these pointer 
events will be delivered to a particular window regardleaa of 
the pointer’8 tocation on the acreen. 

Op<OdC28 
dals:m 
padding:0 
total length:24 
reply length:0 

GrabKey: 

Description: For all keyboard events occurring while the 
apedied combination of buttons ad modiPer keya arc pressed, 
declare thatthese keyboard events will be delivered to a 
particular window regardleas of the pointer’s location on 
‘he acreeo. 

opcode33 
data:‘? 
padding:0 
tota, length:16 
reply length:0 

GrabKeyboard: 

Description: Declare that all keyboard events will be 
delivered to a particuhr window regardleaa of the pointer’s 
locatioa on the (screen. 

opcode:31 
datr12 
pCddhg:O 
tota, k&h:16 
reply length:32 

GrabPointer: 

Deaacription: Declare that all pointer eventa (button prcaaea and 
motion) will be delivered to a particular window regardless of the 
pointer’s ,ocarion on the ‘Cnx”. 

opcode26 
date.m 
padding:0 
tota, length:24 
reply length:32 

QucryKeymap: 

Description: Get the current state of the entire keyboard 

OPCOdC44 
de&l:0 
paddin*: 
total length:4 
reply lcngth:32+8 

QueryPointer: 

Description: Get the current pointer poaitioo 

opcodc38 
dah:o 



C-16 X Requests Listings and Descriptions 

paddillg:ll 
to‘d len@b:l 
reply length32 

SetModiBcrMappiog: 

Dexription: Set the mapping al physical keys to lo&al 
modifiera such as Shift and Control. 

opcode:118 
data:80 

o: number of KEYCODEs 
paddin@ 
tota, k‘gth:*+*o 
reply ,ength:3* 

SetPointerMapping: 

Description: Set the mapping of physical buttons to logical 
buttons. 

opcode:116 
data:‘l 

n: number of MAPS 
psdding:p 
total length:4+o+p 
reply leogth:32 

UngrabButton: 

Description: Release a grab on a button. 

opcode:29 
dsta:(l 
padding:0 
tot., lellg‘h:1* 
repiy lengtila 

UograbKey: 

Description: Release LL grsb on a button. 

opcode:M 
da*?.:8 
padding:0 
tot?., length:12 
reply Icngfixo 

UngrabKeyboard: 

Description: Release a grab on the keyboard. 

opcode32 
&3,X4 
padding:0 
tota, length:8 
reply length:0 

UngrabPoin‘er: 

Deacriptian: Release a grab on the painter. 

OPCOdC27 
d&&A 
padding:0 
tota, length:8 



X Requests Listings and Descriptions 

reply length:0 

WarpPointer: 

Description: Move the pointer. 

opcode:ll 
d~‘~:Xl 
p*ddingY3 
tota, leng‘lxZ1 
reply len&cll 

Security 

Chst‘geHo~ta: 

Description: Modify the list of hoata that are allowed 
access to a sewer. 

OpCOd~:1tl0 
data:“+” 

n: number of addreaaea 
psdding:p 
total Icng‘b:8+nq, 
reply Icngth:O 

Description: Turn on or ofI the mcchsniam that checks the bolt 
~LCCCS~ lit before allowing a canneetioo. 

OPCOdClll 
data:0 
padding:0 
total length:4 
reply Icngth:0 

WindrnvCharacteristics 

ChangeWindovAttributea: 

Description: Set any or all window attributes. For a 
brief description of the window attributea. 

opcode:2 
ds‘a:8+4” 

n: number of VALUES 
padding:0 
total lengtb:12+4n 
reply Icngth:ll 

GetGeometry: 

Description: Return the position, dimenaiona, border width, 
and depth o< a window; return the ID of the root window at 
the tap of the window’s hierarchy. 

opcode:ll 
Ch‘Xl 
padding:0 
‘oral length:8 
reply length32 

c-17 

GctWindowAttributes: 



C-18 X Requests Listings and Descriptions 

Deseriptioo: Get the current value* of *ome of the window 
attributea described Lx ChangeWindovAttributes; alao find 
out the characteristics al the window that were eat when 
it was created (InputOnly or InputOutput, and visual). whether 
ita colormap ia installed and whether it ir mapped or viewable. 

opcode:3 
*ata:* 
padding:0 
tot*, len.th:ll 
reply length:32+12 

Window Manipulation by the Client 

CreateWindow: 

Description: Create a window 

opeode:l 
dsta:28+4n 

n: oumber 01 “AL”Es 
padding:0 
‘O‘d length:32+4o 
reply length:0 

DcstroySubwindovs: 

Description: Destroy an entire hierarchy of windows. 

opcode:5 
data:4 
padding:0 
tot.1 hgth:8 
reply 1ength:o 

DeatroyWiodow: 

Description: Deatroya a window. 
OPCOdd 
data:4 
padding:0 
total length:8 
reply len#b:0 

MapSubwindowa: 

Description: Map all subwindows of a window. 

opcode:!3 
data:4 
padding:0 
tot., length:.9 
reply length:0 

MapWindow: 

Descriptioo: Mark a window as eligible for display. 

opcode:.3 
data:* 
padding:0 
total length:.3 
reply len*th:0 

“nmapSubvindows: 



X Requests Listings and Descriptions 

Description: Remove all aubvindowa of a window, but not the 
window itself, from the acreen. 

opeode:ll 
data:, 
padding:0 
‘0‘e.i length:8 
reply le”g‘h:0 

UnmapWindov: 

Deacriiption: Remove a window and all its subwindows from the 
screen. 

opeodc:lO 
da‘.:4 
padding0 
total length:8 
reply Icngth:cl 

Window Manipulation by the Window Manager 

Dcecriptiao: Add or remove windows from a (IIIW-set 

opeode:‘Z 
data:4 
padding:0 
total length:8 
reply length:0 

CirculateWindow: 

Description: Lower the highest window on the acreen or raise the 
lowcat w.e, depending on the parameters oC this request. 

opcode:lZ 
data:4 
padding:0 
total length:8 
reply length:0 

Description: Allow the window manager to move, r&m. 
change the border width, or change the atacking order 
of a window. 

opcode:ll 
da‘aB+ln 

n: number 01 VALUES 
padding:0 
tota, le”g‘h:12+4” 
reply Icngth:0 

Description: Allow the window manager to get the window 
IDs of windows it did not create. 

opcode:H 
data:4 
padding:0 

c-19 



c-20 X Requests Listings and Descriptions 

tot*, length:8 
reply leog‘h:32+4n 

n: number of WINDOWa in children 

ReparentWiodaw: 

Description: Allow the window manager to change the window 
hierarchy to insert a frame window between each top-lerel 
window on the screen and the root window. The window manager 
cm the decorate thia frame window with a title for the 
applicatiott. buttona for moving and reaieing the window, etc. 

opcode:, 
ds‘a:tf 
padding&l 
‘o‘d ,em@h:,G 
reply tength:o 

CrestcPixmap: 

Deacriptioo: Create an oif-screen drawable 

opcode53 
data:12 
padding:0 
tota, k”gfh:lf, 
reply length:0 

ForceScrccoSsrer: 

Dcmiptioo: Activate or read the semen saver 

opcod.:115 
*.*a:0 
paddiig:‘l 
‘oral IeagthA 
reply length:0 

FreePtimap: 

Description: Free the memory associated with an of,-acrcen 
drawable. 

o,xode:S, 
data:, 
padding:0 
total length:.3 
reply length:0 

Deacriptim: Get the characteristica of the mechanism 
the blanks the screen after an idle period. 

opcode:108 
da‘.:0 
padding:0 
tota, length:4 
reply length:32 

GrabSewer: 

Deacriptioo: Initiate a state where requests only lrom a 
single client will be acted upon. The aener will queue 
eventa lor other clients and w,“esta made by other clients 
until the srab is released. 



X Requests Listings and Descriptions 

opcode:36 
data:0 
padding:0 
tot., length:4 
reply length:0 

KillClient: 

Deacriptian: After a client exits because of the SetCloaeDownMode 
reqmmt, kill the rea~urces that remain alive. 

opcode:113 
da‘s:4 
padding:0 
tota, length:8 
reply length:0 

LiitExtensions: 

Deaeription: List the extenaiona available on the server. 

opcode99 
data:0 
padding:0 
tots, length:4 
reply length:32+n+p 

n: length of ‘iat of names 

NoOperation: 

Description: The minimum request. it contains only the opcode and 
rcq”ca‘ length. 

opcode127 
da‘.:0 
padding:0 
tots, length:.‘ 
reply length:0 

QueryBertSize: 

Description: Query the sewer for the luteat bike for creating 
tilca or stipples or the largeat support he for cursor. 

opcade:!X 
data:8 
padditt,g:O 
total length:,* 
reply length32 

QueryExtenaioo: 

Description: Determine whether a certain extension is available in 
‘he server. 

opcode:‘S 
data:4+n 

n: length 01 name 
padding:p 
total le”g‘h:8+“+p 
reply length32 

SendEven‘: 

c-21 

Description: Send any type oi event to a particular window. 



c-22 

opcode25 
dala:lLl 
padding:0 
total leogth:44 
reply length:0 

X Requests Listings and Descriptions 

SetClaaeDowrMadc: 

Demtiption: Determine whether resources created by a 
client exe preserved after the client exita. Normslly, 
they are nor. but if the client can reclaim its resources 
in a later incarnation, the client can use this request. 

opcode:ll? 
dsta:0 
pddio@l 
tat&l I.ngth:l 
reply length:0 

SetScreenSarcr: 

Description: Set characteristics that blaok the screen after an 
idle period. 

opcode:Kv 
d.?d.:8 
paddin@ 
tota, length:,2 
reply Icn*th:0 

TranalsteCoordinates: 

Description: Translate coordinates from a window frame of 
rcfrreoce to e. screen Irame of reference. 

opcode:40 
data:12 
paddillg:ll 
tota, length:tS 
reply length:32 

Dcacription: Release the grab on the aerrer, process all 
outstanding requests, and aend all queued events. 

opcode:3, 
data:,20 
padding:0 
total len@h:* 
reply length:0 



Appendix D 

Listing of X Requets with Replies 

This appendix provides a summary of X requests that have replies. 

. AllocColor 

l GetAtomName 

l GetGeometry 

. GetImage 

. GetKeyboardControl 

. GetKeyboardMapping 

l GetModitierMapping 

l GetMotionEvents 

l GetPointerControl 

l GetPointerMapping 

. G&Property 

. GetScreenSaver 

l GetSelectionOwner 

. GetWindowAttributes 

. GrabKeyboard 

l GrabPointer 

l InternAtom 

. ListExtensions 



D-2 

l ListFonts 

l ListHosts 

l ListInstalledCollormaps 

l ListProperties 

. LookupColor 

l QueryBestS& 

. QueryColors 

l QueryExtensions 

. QueryFonts 

l QueryKeymap 

l QueryPointer 

. QueryTextExtents 

. QueryTree 

. SetModifierMapping 

l SetPointerMapping 

. TranslateCoordinates 

Listing of X Requets with Replies 



Appendix E 

X Events 

The following is a listing of all event types, what they signify, and any special 

notes about how they are selected. 

ButtonPress, ButtonRelease 

A pointer button was press or released. These events include the pointer position 
and the state of the modifier keys on the keyboard (such as shift). 

CirculateNotify, ConfigureNotify, CreateNotify, DestroyNotify, MapNotify, 
UnmapNotify 

This event is generated when one of these requests is actually made on a window. 
These are used to tell a client when some other client has manipulated a window. 
Usually this other client is the window manager. All these events and 
GravityNotify and ReparentNotify can only be selected together. 

CirculateRequest, ConfigureRequest, MapRequest, ResizeRequest 

These events are selected by the window manager to enforce its window manage- 
ment policy. Once selected by the window manager, any request to resize, remap, 
reconfigure, or circulate the window by any client other than the window manager 
will not be acted on by the server but instead will result in one of these events 
being sent to the window manager. The window manager then can decide whether 
to allow, modify, or deny the parameters of the request given in the event and 
then reissue the request to the server. 

ClititMessage 

These events, or any other type, can be sent from one client to another using the 
SentEvent request. This event type is for client-specific information. 

ColormapNotify 

This event tells a client when a colormap has been modified or when it is installed 
or unistalled from the hardware colormap. 

EnterNotify, LeaveNotify 



E-Z X Events 

The pointer entered or left a window. These events are generated even for each 
window not visible on the screen that is, an. ancestor of the orgin or destination 
window. 

Expose 

Expose envents signify that a section of a window has become visible and should 
be drawn by the client. 

FocusIn, FocusOut 

The keyboard focus window has been changed. Like EnterNotify and 
LeaveNotify, these events can be generated even for invisible windows. 

GraphicsExpose, NoExpose 

GraphicsExpose and NoExpose are generated only as the result of CopyArea 
and CopyPlane requests. If the source area specified in either request is unavail- 
able, one or more GraphicsExpose events are generated, and they specify the area 
of destination that could not be drawn. If the source area was available, a single 
NoExpose event is generated. GraphicsExpose and NoExpose events are not selected 
normaly but instead are turned on or off by a member of the graphics context. 

GravityNotify 

This event notifies a client when a window has been moved in relation to its 
parent because of its window gravity attribute. This window attribute is designed 
to alllow automatic positioning of subwindows in certain simple cases when the 
parent is resized. 

KeymapNotify 

Always following EnterNotify or FocusIn, KeymapNotify gives the complete status 
of all the keys on the keyboard. 

KeyPress, KeyRelease 

A keyboard key was pressed or released. Even the Shift and Control keys generate 
these events. Thereis no way to select just the events on a particular keys. 

MappingNotify 

The pointer moved. MotionNotify events can be selected such that they are 
deliverd only when certain button are pressed or regardless of the pointer buttons. 

PropertyNotify 

This event is issued whenever a client changes or deletes a propert, even if the 
change is to replace data with identical data. 

SelectionClear, SelectionNotify, SelectionRequest 

These three events are used in the selection method of communicating between 
clients. These events are not selected, but are always generated by the requests in- 
volved in the selection procedures. 



X Events E-s 

VisibilityNotify 

This event is generated when a windoti changes from fully obscured, partially 
obscured, or unobscured to any other of these states and also when this window 
becomes viewable. 



This Page Intentionally Left Blank 



Appendix F 

X Errors 

The following error codes can be return by the various requests. 

Access: 

An attempt is made to grab a key/button combination already grabbed by another 
client. 

An attempt is made to free a color map entry not allocated by the client. 

An attempt is made to store into a read-only or an unallocated colormap entry. 

An attempt is made to modify the access control list from other than the local 
host (or otherwise authorized client). 

An attempt is made to select an event type that only one client can select at a 
time when another client has already selected it. 

Alloc: 

The server failed to allocate the requested resource. 

A value for an ATOM argument does not name a defined ATOM. 

Colo-p: 

A value for a COLORMAP argument does not name a defined COLORMAP. 

Cursor: 

A value for a CURSOR argument does not name a defined CURSOR. 

Drawable: 

A value for a DRAWABLE argument does not name a defined WINDOW or PIX- 
MAP. 

Font: 

A value for a FONT argument does not name a define FONT. 



F-2 X Errors 

A value for a FONTABLE argument does not name a defined FONT or a defined 
GCONTEXT. 

GCONTEXT: 

A value for a GCONTEXT argument does not name a defined GCONTEXT. 

Implementation: 

The server does not implement some aspect of the request. A server that generates 
this error for a core request is deticient. 

Length: 

The length of a request is shorter or longer than that required to minimally con- 
tain the arguments. 

The length of a request exceeds the maximum length accepted by the server. 

Match: 

An InputOnly window is used as a drawable. 

In a graphic request, the GCONTEXT argument does not have the same root and 
depth as the destination DRAWABLE argument. 

Some argument has the correct type and range, but it fails to match in some 
other way required by the request. 

Name: 

A font or color of the specified name does not exist. 

Pixmap: 

A value for a PIXMAP argument does not name a defined PIXMAP. 

Request: 

The major or minor opcode does not specify a valid request. 

Value: 

Some numeric value falls outside the range of values accepted by the request. Un- 
less a specified range is specified for an argument, the full range defined by the 
argument’s type is accepted. 

Window: 

A value for a WINDOW argument does not name a defined WINDOW. 


